
 Volume 2, Issue 3, March 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Hybrid Model: EDS Using Test Prioritization Strategies
P. Srinivasa Reddi* CH. Gouthami

 Associate Professor M. Tech Student

 IT Department, SVEC, Tirupati IT Department, SVEC, Tirupati

 gowthami.ch52@gmail.com

Abstract— Now a day’s Event-Driven Software application is playing a prominent role. EDS have rapidly become a crictical part of

business for many organizations. All EDSs take sequences of events (e.g., messages and mouse-clicks) as input, change their state,

and produce an output(e.g., events, system calls, and text messages); Common examples of EDS include graphical user interfaces

(GUIs), web applications, network protocols, embedded software, software components, and device drivers. The term Events can
be user actions such as clicking a mouse button or pressing a key or System occurrences. Most Modern EDS applications,

particularly those that run in Macintosh and Windows environments, are said to be Event-Driven because they are designed to

respond to events. The contributions of the work included: the first single model for testing stand-alone GUI and web-based

applications, a shared prioritization function based on the abstract model, and shared prioritization criteria. The results of showed

that GUI and web-based applications, when recast using the model, showed similar behavior. This paper extends the single model
to hybrid prioritization criteria that combine several criteria that work well individually and evaluate whether the hybrid criteria

result in more effective test orders.

 Keywords—Event-Driven Software, test-suite prioritization, Web application testing, GUI testing, Interaction Testing, User-

session-based Testing

I. Introduction

Event-Driven Software (EDS) is a class of software that

is quickly becoming ubiquitous. It can change state based on

incoming events. Events can be user actions such as clicking

a mouse button or pressing a key. Examples include Web

applications, graphical user interfaces, network protocols,

device drivers, and embedded software. . In GUI applicat ions

the term GUI is the front end to a software‟s underlying back

end code. In Web application the term Web is a set of static

or dynamic web pages that are accessible by users through a

browser over a network.

Many of today‟s EDS software applications are

developed and maintained by multiple programmers often

geographically distributed, who work on parts of the over all

application code. Qua lity assurance tasks such as testing have

become important for EDS as they are now being used in

critical applicat ions. Researchers have developed several

models for automated GUI testing and web application

testing. In GUI testing the DART (Daily Automated

Regression Tester) [1], is used to test the GUI. It analyzes

each widget in each of the windows of the project. It

computes the total number of possible smoke tests and the

test designer specifies the number of test cases that should be

executed. For GUI smoke testing, a tester has to produce test

cases that satisfy the following requirements: The smoke test

cases should be generated and executed quickly. As the GUI

is modified, many of the test cases should remain usable.

In web application ting a FSM (Finite State Machines) model

is used to test the web application. Some testing criteria:

Page testing: every page in the site is visited at least once in

some test case.

Hyperlink testing: every hyperlink from every page in the

site is traversed at least once.

Definition-use testing: all navigation paths from every

definit ion of a variable to every use of it, forming data

dependence, is exercised.

All-uses testing: at least one navigation path from every

definit ion of a variable to every use of it, forming data

dependence, is exercised.

All-paths testing: every path in the site is traversed in some

test case at least once.

Despite the above similarities of GUI and web applications,

all the efforts to address their common testing problems have

been made separately due to two reasons. First, is the

challenge of coming up with a single model of these

applications that adequately captures their event-driven

nature, yet abstracts away elements that are not important for

functional testing. Second, is the unavailability of subject

applications and tools for researchers. We use the term GUI

testing [1] to mean that a GUI-based software application is

tested solely by performing sequences of events on GUI

widgets and the correctness of the software is determined by

examining only the state of the GUI widgets.

http://www.ijarcsse.com/

Volume 2, issue 3, March 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 25

we will further generalize the model by evaluating its

applicability and usefulness for other software testing

activities, such as test generation. Our study also makes

contributions toward test prioritizat ion research. Many of our

prioritization criteria improve the rate of fault detection of the

test cases over random orderings of tests. We also develop

hybrid priorit ization criteria that combine several criteria that

work well individually and evaluate whether the hybrid

criteria result in more effect ive test orders.

II. BACKGROUND AND RELATED WORK

This section provides background on EDS

applications i.e., GUI applicat ions and web applications

[2],[3],[4],.,

A. Event-Driven Software

The event-driven nature of GUIs presents the first

serious testing difficulty. Because users may click

on any pixel on the screen, there are many, many

more possible user inputs that can occur .The user

has an ext remely wide choice of actions. At any

point in the application, the users may click on any

field or object within a window. They may bring

another window in the same application to the front

and access that. The window may be owned by

another application. The user may choose to access

an operating system component directly e.g.

a system configuration control panel .The large

number of available options mean that the

application code must at all times deal with the next

event, whatever it may be. In the more advanced

development environments, where sophisticated

frameworks are being used, many of these events

are handled „behind the scenes‟. With less advanced

toolkits, the programmer must write code to handle

these events exp licitly. Many errors occur

because the programmer cannot anticipate every

context in which their event handlers are invoked.

B. GUI Testing

There are four stages for GUI Testing. They are:

 Low level - maps to a unit test stage.

 Application - maps to either a unit test or

functional system test stage.

 Integration - maps to a functional system

test stage.

 Non-functional - maps to non-functional

system test stage.

The mappings described above are approximate. Clearly

there are occasions when some” GUI integration testing‟ can

be performed as part of a unit test. The test types in “GUI

application testing‟ are equally suitable in unit or system

testing. In applying the proposed GUI test types, the

objective of each test stage, the capabilities of developers

and testers, the availability of test environment and tools all

need to be taken into consideration before deciding whether

and where each GUI test type is implemented in your test

process.

Stage Test types

Low-Level checklist testing, Navigation

Application Equivalence partitioning, Boundary

values

Integration Desktop integration

Non-

functional

Soak testing, compatibility testing,

platform/environment

Fig 1: Four stages of Test types

C. Web Application Testing

Three main classes of testing techniques are used for

web applications, [3] namely, functional testing,

structural testing and user-session-based testing.

i. Functional Testing

Many of the current testing tools address web usability,

performance, and portability issues. For example, link testers

navigate a web site and verify that all hyperlinks refer to

valid documents. Form testers create scripts that initialize a

form, press each button and type preset scripts into text

fields, ending with pressing the submit button. Compatibility

testers ensure that a web application functions properly with

in different browsers.

ii. Structural Testing

 Ricca and Tonella [6] developed a high-level

UML-based representation of a web application and

described how to perform page, hyperlink, def-use,

all-uses, and all-paths testing based on the data

dependencies computed using the model browsers.

iii. User-session-based Testing

In user-session-based testing [6], data is

collected from users of a web application by the web

server. Each user session is a collection of user

requests in the form of base request and name-value

pairs (e.g., form field data). A base request for a

web application is the request type and resource

location without associated data (e.g., GET

/servlets/authentication/Login.jsp). More

Volume 2, issue 3, March 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 26

specifically, a user session is defined as beginning

when a request from a new IP address reaches the

server and ending when the user leaves the web site

or the session times out.

Tools such as WebKing and Rational Robot

provide automated testing for webapplications by

collecting data from users through few configuration

changes to the web server.

iv. Test Prioritization Strategies For EDS

Given (T, П, f), where T is a test suite[5],[6], П

is the set of all test suites that are priorit ized

orderings of T obtained by permuting the tests of T,

and f is a function to evaluate the orderings from П

to the real numbers, the problem is to find a

permutation, π ε П such that . Priorit izat ion [6] can

be based on any criteria. Examples include code

coverage, cost estimates, event coverage, and others.

Test length based on number of base requests (Req-

LtoS, Req-StoL): order by the number of HTTP

requests in a test case Frequency-based

prioritization (MFAS, AAS): order such that test

cases that cover most frequently accessed

pages/sequence of pages are selected for execution

before test cases that exercise the less frequently

accessed pages/sequences of pages. Unique

coverage of parameter-values (1-way): order tests to

cover all unique parameter-values as soon as

possible. 2-way parameter-value interaction

coverage (2-way): order tests to cover all pair-wise

combinations of parameter-values between pages as

soon as possible. Test length based on number of

parameter values (PV-LtoS, PV-StoL): order by

number of parameter-values used in a test case.

Random: randomly permute the order of tests.we

have developed additional criteria to priorit ize GUI

and web-based programs. Bryce and Memon

prioritize pre-existing test suites[6].[7],[8] for GUI-

based programs by the lengths of tests (i.e., the

number of steps in a test case, where a test case is a

sequence of events that a user invokes through the

GUI), early coverage of all unique events in a test

suite, and early event interaction coverage between

windows (i.e., select tests that contain combinations

of events invoked from different windows which

have not been covered in previously selected tests).

In half of these experiments, event interaction-based

prioritization results in the fastest fault detection

rate. The two applications that cover a larger

percentage of interactions in their test suites

(64.58% and 99.34% respectively) benefit from

prioritization by interaction coverage. The

applications that cover a smaller percentage of

interactions in their test suites (46.34% and 50.75%

respectively) do not benefit from prioritization by

interaction coverage. We concluded that the

interaction coverage of the test suite is an important

characteristic to consider when choosing this

prioritization technique. Similarly, in the web

testing prioritize the user-session-based test suites

for web applications. These experiments showed

that systematic coverage of event-interactions and

frequently accessed sequences improve the rate of

fault detection when tests do not have a high Fault

Detection Density (FDD), where FDD is a measure

of the number of faults that each test identifies on

average.

In our past work, we have developed different

criteria to priorit ize GUI and Web-based programs.

Priorit ize the preexisting test suites for GUI-based

programs by the lengths of tests (i.e., the number of

steps in a test case, where a test case is a sequence

of events that a user invokes through the GUI), early

coverage of all unique events in a test suite, and

early event interaction coverage between windows

(i.e ., select tests that contain combinations of events

invoked from different windows which have not

been covered in previously selected tests) [5]. In

half of these experiments, event interaction-based

prioritization results in the fastest fault detection

rate. The two applications that cover a larger

percentage of interactions in their test suites (64.58

and 99.34 percent, respectively) benefit from

prioritization by interaction coverage. The

applications that cover a smaller percentage of

interactions in their test suites (46.34 and 50.75

percent, respectively) do not benefit from

prioritization by interaction coverage. We concluded

that the interaction coverage of the test suite is an

important characteristic to consider when choosing

this priorit ization technique.

These experiments showed that systematic

coverage of event interactions and frequently

accessed sequences improve the rate of fault

detection when tests do not have a high Fault

Detection Density (FDD), where FDD is a measure

Volume 2, issue 3, March 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 27

of the number of faults that each test identifies on

average.

III. HYBRID MODEL

To develop the hybrid model, we first review how GUI

and Web applications operate. For GUI applicat ions, action

listeners are probably the easiest—and most common—event

handlers to implement. The programmer implements an

action listener to respond to the user’s indication that some

implementation-dependent action should occur. When the

user performs an event, e.g., clicks a button, chooses a menu

item, an action event occurs. The result is that (using the Java

convention) an actionPerformed message is sent to all action

listeners that are registered on the relevant component. To

develop the hybrid model we can generate no. of test cases

from the given application.

A test case is modeled as a sequence of actions. For

each action, a user sets a value for one or more parameters.

Fig. 2 shows an example window from a GUI application

entitled “Replace.” We use the term window to refer to GUI

windows such as this Replace window. The window has

several widgets. A user typically sets some properties of

these widgets (e.g., checking a check-boxes, adding text to a

text field) and “submits” this information. Underlying code

then uses these settings to make changes to the software state.

Because of how widgets are used in the GUI, we refer to

them as parameters in this paper. We refer to the settings for

the widgets as values. We refer to the pair <parameter name;

value> as parameter-values. For instance, in Table 1, the

“Find what” Combo box is a parameter with the value

“software”; the “Match case” check-box is a parameter with

the value “false”; these parameters are used by actions.

Fig. 2. GUI Application Window

Parameter ,Value

1. <”Find What” combo box, set text>

2. <”Find What” combo box, left click dropdown>

3. <”Replace With” combo box, set text>

4. <”Replace With” combo box, left click dropdown>

5. <”Match case” checkbox, left click select >

6. <”Match case” checkbox, left click unselect >

7. <”Match whole word only” checkbox, left click select >

8. <”Match whole word only” checkbox, left click unselect

>

9.<”Replace” button, left click>

10.<”Replace All” button, left click>

11.<”Find Next” button, left click>

12. <”Cancel” button, left click>

Fig. 3. Twelve Parameter values on the GUI Window

Fig 3 shows all possible parameter-values for the

window shown in Fig 2. The consecutive sequence of user

interactions on a single window as an action. An example of

an action for the Replace window is the sequence “enter

„software‟ in text -box,” “check „Match case‟ check-box,” and

“click-on „Find Next‟ button.”

Similarly, fo r Web applications, we refer to a Web

application page as a window. As with GUIs, widgets in a

window are referred to as parameters, and their settings as

values. Fig 4 shows the “Login” text field is a parameter that

is set to the value “guest” and their Parameter, values[7] are

shown that Table 2 and Table 3 shows that a sample GUI

Test cases and their Parameter values.

Fig. 4. Web Application Window

Table 1
Four parameter values on web application

Parameter, Value

1. <FormName, Login>

2.<Login text field, guest>

3. <Password text field, guest>

4.<FormAction, Login >

In Hybrid model we can use different no. of criterions for

both GUI applications and web based applications.

A. Parameter-value interaction coverage-based criteria

Volume 2, issue 3, March 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 28

 In this module 1-way and 2-way parameter-value

interaction coverage techniques select tests to systematically

cover parameter-value interactions between windows.

 1- Way

Table 3 shows that a 1-way criterion selects a next test

to maximize the number of parameter-values that do not

appear in previously selected tests.
Table 3

1-Way

Test Parameter-values Windows visited

t 1 1->2->5->6->15-
>8->4->8

W1->W2->W4->W2-
>W1->W2

t 2 1->3->6->17 W1->W2->W5

t 3 2->3->6->8->10-

>11->12->9->13-

>16

W1->W2->W3

t 4 3 W1

The first selected test is t1 because it covers because

it covers 6 parameter values (1, 2, 4, 2, 1, 2).The next

test selected is t2 because it covers 3 parameter values.

The final priorit ized sequence is t1, t2, t3, t4.

 2- Way:

Table 4 shows the criterion selects a next test to

maximize the number of 2-way.

Table 4
2-way

Test

No.

No. of 2-way

Interactions

List of 2-way

interactions

t 1 13 (1,6), (1,15), (1,8),

(2,6), (2,15), (2,5)

,(5,6), (5,15), (5,7),

(6,14), (4,8), (4,6),
(4,8)

t 2 15 (1,6), (1,15), (1,8),

(2,6), (2,15), (2,5)

,(5,6), (5,15), (5,7),
(6,14), (4,8), (4,6),

(4,8), (6,15),(6,8).

 B. Count based Criteria

In this criterion we count the number of windows,

actions, or parameter-values that they cover.

Window coverage

In this criterion, we prioritize tests by giving

preference to test cases that cover the most unique

windows that previous tests have not covered.

Action count-based

 In this criterion, we priorit ize tests by the

number of actions in each test (duplicates included).

The prioritization includes selecting the test cases

with preference given to those that include the most

number of actions.

Parameter-value count-based

Test cases contain settings for parameters

that users set to specific values. We priorit ize tests

by the number of parameters that are set to values in

a test case (duplicates included). This includes

selecting those tests with the largest number of

parameter value settings in a test first.

 C. Frequency-based Criteria

 In this module we prio rit ize the test case based on

frequency.

 Most-frequently present sequence of windows

(MFPS)

Table 5 shows that the criterion, MFPS, we

first identify the most frequently present sequence of

windows, s i, in the test suite and order test cases in

decreasing order of the number of times that si

appears in the test case. Then, from among the test

cases that do not use s i even once, the most

frequently present sequence, s j is identified, and the

test cases are ordered in decreasing order.

Table 5

 Frequence of Presence Table

Sequence name Totalnoof

occurrences

Test cases with

maximum

W1->W2

W2->W4

W4->W2

W2->W5

W2->W3

4

1

1

1

1

t 1,t2, t3

t 1

t 1

t 2

t 3

 All present sequence of windows (APS)

In APS, the frequency of occurrence of all

sequences is used to order the test suite. For each

sequence, si, in the application, beginning with the

most frequently present sequence, test cases that

have maximum occurrences of these sequences are

selected for execution before other test cases in the

test suite.

 Weighted sequence of windows (Weighted-Freq)

Table 6 shows that the weighted technique

assigns each test case a weighted value based on all

the window sequences it contains, and the

importance (the weight of a sequence of windows is

measured by the number of times the sequence

appears in the suite) of the window sequence.

Initially, we identify the frequency of appearance of

each unique sequence of windows in the test suite

and build a weighted matrix fo r each unique

window sequence. This frequency of appearance is

the weight of the unique sequence of window.

Table 6
weighted sequence of windows

Volume 2, issue 3, March 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 29

Test Parameter values Windows visited

t1 1->2->5->6->15->8->4-

>8

W1->W2->W4-

>W2->W1->W2

t2 1->3->6->17 W1->W2->W5

t3 2->3->6->8->10->11-

>12->9->13->16

W1->W2->W3

t4 3 W1

D. Subject Applications

In Hybrid model we have taken four GUI and three

Web-based applications

1. Calc

2. Paint

3. SSheet

4. Word

5. Book

6. CPM

7. Masplas

Based on the subject applicatons by applying the hybrid

model we can calculate the Fault detection rate.

IV. RESULTS

Table 7 shows the hybrid model of CPM for 3 criteria i.e.‟ APS, 2-way and MFPS

Table 7
CPM:Hybrid-Average Percentage Fault Detected

% of test suite run 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

APS , 2-way and MFPS

2-way 93.22 93.22 93.22 93.22 94.69 94.69 95.62 95.62 95.62 95.62

APS 93.74 94.19 95.88 95.88 95.88 96.11 96.11 96.11 96.11 96.18

APS-2-way-10%-no-

APFD-increase

93.74 93.74 93.74 93.74 95.13 95.13 96.08 96.08 96.08 96.08

APS-2-way-20%-no-

APFD-increase

93.74 94.19 95.88 95.88 95.88 95.88 96.92 96.92 96.92 96.92

MFPS 93.33 93.33 93.33 93.33 93.33 94.28 94.28 94.28 94.49 94.69

MFPS-2-way-10%-no-

APFD-increase

93.29 93.29 93.29 93.29 94.73 94.73 95.69 95.69 95.69 95.69

MFPS-2-way-20%-no-

APFD-increase

93.29 93.29 93.29 93.29 94.73 94.73 95.69 95.69 95.69 95.69

V. CONCLUSION AND FUTURE WORK

This paper extends the single model to hybrid

prioritization criteria that combine several criteria that work

well indiv idually and evaluate whether the hybrid criteria

result in more effective test orders. In future work we have

developed the prioritization criteria that improve the rate of

fault detection of the test cases over random orderings of

tests.

REFERENCES

[1]. A.M. Memon and Q. Xie, “Studying the Fault-Detection

Effectiveness of GUI Test Cases for Evolving

Software,” IEEE Trans . Software Eng., vol. 31, no. 10,

pp. 884-896, Oct. 2005.

[2]. A. Andrews, J. Offutt, and R. A lexander, “Testing Web

Applications by Modeling with FSMs,” Software and

Systems Modeling, vol. 4, no. 3, pp. 326-345, July

2005.

[3]. G.D. Lucca, A. Fasolino, F. Faralli, and U.D. Carlin i,

“Testing Web Applications,” Proc. IEEE Int‟l Conf.

Software Maintenance, pp. 310- 319, Oct. 2002.

[4]. F. Ricca and P. Tonella, “Analysis and Testing of Web

Applications,” Proc. Int‟l Conf. Software Eng., pp. 25-

34, May. 2001.

[5]. R.C. Bryce and A.M. Memon, “Test Suite Priorit izat ion

by Interaction Coverage,” Proc. Workshop Domain-

Specific Approaches to Software Test Automation in

Conjunction with Sixth Joint Meeting of the European

Software Eng. Conf. and ACM SIGSOFT Symp.

Foundations of Software Eng., pp. 1-7, Sept. 2007.

[6]. S. Sampath, R. Bryce, G. Viswanath, V. Kandimalla, and

A.G. Koru, “Priorit izing User-Session-Based Test Cases

for Web Application Testing,” Proc. IEEE Int‟l Conf.

Software Testing, Verificat ion, and Validation, pp. 141-

150, Apr. 2008.

[7]. S. Sampath, S. Sprenkle, E. Gibson, L. Pollock, and A.S.

Greenwald, “Applying Concept Analysis to User-

Session-Based Testing of Web Applications,” IEEE

Trans. Software Eng., vol. 33, no. 10, pp. 643-658, Oct.

2007.

[8]. S. Sprenkle, L. Pollock, H. Esquivel, B. Hazelwood, and

S. Ecott, “Automated Oracle Comparators for Testing

Web Applications,” Proc. Int‟l Symp. Software

Reliab ility Eng., pp. 253-262, Nov. 2007.

Volume 2, issue 3, March 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 30

P.Srinivasa Reddi received the B.Tech. degree in

Information Technology from the

Nagarjuna university,Guntur,Andhra

pradesh in 2002 and M.Tech. degree

in computer science from the

university of JNTU Htderabad in

2006. From 2002 to 2003,he worked

as software engineer and later joined

as a lecturer in Sree Vidyanikethan

Engineering College, tirupathi

worked from 2003 to 2004.Since

2006,he had been an Assistant

professor and then associate professor

in Sree Vidyanikethan Engineering College, Tirupathi.His

resaerch interests include computer vision and Image

processing.He is a life member of ISTE.

CH.Gouthami received the B.Tech Computer Science and

Engineering from JNTUK,

Kakinada, India in 2009 and

pursuing her Master‟s degree in

Software Engineering from the

JNTUA, Anantapur, India. Her

research areas are Software

Engineering, Data warehousing and

Data Mining, Database

Management Systems and Cloud

Computing.

