
 Volume 2, Issue 3, March 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

A Simulation Based Study of AODV, DSR, DSDV

Routing Protocols in MANET Using NS-2

G. Jose Moses
*

D. Sunil Kumar

Prof.P.Suresh Varma N.Supriya
 Research Scholar Student Professor Faculty

Department of Computer Science Department of MCA Department of Computer Science Department of CS

Adikavi Nannaya University Government College Adikavi Nannaya University Adikavi Nannaya University

Rajahmundry, A.P, INDIA Rajahmundry, A.P, INDIA Rajahmundry, A.P, INDIA Rajahmundry, A.P,

josemoses@gmail.com

Abstract— Mobile Ad-hoc Networks are autonomously self-organized networks without infrastructure support. To facilitate

communication within the network a routing protocol is used to discover routes between nodes. The main aim of the routing protocol

is to have an efficient route establishment between a pair of nodes, so that messages can be delivered in a timely manner. Routing in

the MANETs is a challenging task which has led to development of many different routing protocols for MANETs. In this paper, an

attempt has been made to implement and compare performance of three well know protocols AODV, DSR and DSDV by using four

performance metrics Throughput, Packet delivery ratio, End to End delay and Average Routing load, the performance analysis has

been done by using simulation tool ns-2 which is the main simulator.

Keywords— Ad-hoc, MANET, AODV, DSR, DSDV, NS-2.

 INTRODUCTION

Wireless networking is an emerging technology that allows

users to access information and services electronically,

regardless of their geographic position. Wireless networks can

be classified in two types. [1]

Infrastructure Networks

Infrastructure network consists of a network with fixed and

wired gateways. A mobile host communicates with a bridge in

the network (called base station) within its communication

radius. The mobile unit can move geographically while it is

communicating. When it goes out of range of one base station,

it connects with new base station and starts communicating

through it. This is called handoff. In this approach the base

stations are fixed.

Infrastructure Network

Infrastructure Less (Ad hoc) Networks

In ad hoc networks all nodes are mobile and can be connected

dynamically in an arbitrary manner. As the range of each

host’s wireless transmission is limited, so to communicate

with hosts outside its transmission range, a host needs to enlist

the aid of its nearby hosts in forwarding packets to the

destination. So all nodes of these networks behave as routers

and take part in discovery and maintenance of routes to other

nodes in the network.

Mobile Ad hoc Network

Challenges in MANETs

 Power controlling at Physical layer

 Efficient routing at Network layer

http://www.ijarcsse.com/
mailto:josemoses@gmail.com

Volume 2, issue 3, March 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 44

 Quality of service at Transport layer

Routing Protocols

Design of the efficient routing protocol in the MANET

environment is difficult because of its ―short live‖ nature. And

as the network topologies are dynamically changed. Routing

protocols for MANETs can be broadly classified into two

categories. Those are

 Proactive or table-driven routing protocols

 Reactive or on-demand routing protocols.

Proactive routing protocols

Proactive MANET protocols are table-driven and will actively

determine the layout of the network. Through a regular

exchange of network topology packets between the nodes of

the network, a complete picture of the network is maintained

at every single node. There is hence minimal delay in

determining the route to be selected. Some Proactive MANET

Protocols include: DSDV, DBF, GSR, WRP, ZRP, and FSR.

Reactive routing protocols

On-demand routing is a popular routing category for wireless

ad hoc routing. It is a relatively new routing philosophy that

provides a scalable solution to relatively large network

topologies. The design follows the idea that each node tries to

reduce routing overhead by only sending routing packets

when communication is requested. Common for most on-

demand routing protocols are the route discovery phase where

packets are flooded into the network in search of an optimal

path to the destination node in the network. Some Reactive

MANET Protocols include: DSR, AODV and TORA.

The emphasis in this paper is concentrated on the comparison

of various Proactive and Reactive protocols like DSDV [2],

DSR [4] and AODV [5]

DSDV

This protocol is based on classical Bellman-Ford routing

algorithm [3] designed for MANETS. Each node maintains a

list of all destinations and number of hops to each destination.

Each entry is marked with a sequence number. It uses full

dump or incremental update to reduce network traffic

generated by route updates. The broadcast of route updates is

delayed by settling time. The only improvement made here is

avoidance of routing loops in a mobile network of routers.

With this improvement, routing information is always

available, regardless whether the source node requires the

information or not. With the addition of sequence numbers,

routes for the same destination are selected based on the

following rules: [2]

1. A route with a newer sequence number is preferred.

2. In the case that two routes have a same sequence

number, the one with a better cost metric is

preferred.

The list which is maintained is called routing table. The

routing table contains the following:

Destination
Next

Hop

No.

of

Hops

Sequence

No

Install

time

The sequence number is used to distinguish stale routes from

new ones and thus it avoids the formation of loops. The

stations periodically transmit their routing tables to their

immediate neighbors. A station also transmits its routing table

if a significant change has occurred in its table from the last

update sent. So, the update is both time-driven and event-

driven.

Each row of the update send is of the following form:

<Dest. IP address, Dest. sequence number, Hop count>

After receiving an update neighboring nodes utilizes it to

compute the routing table entries.

Resolving route failure in DSDV

DSR

The Dynamic Source Routing protocol (DSR) [4] is a simple

and efficient routing protocol designed specifically for use in

multi-hop wireless ad hoc networks of mobile nodes. DSR

allows the network to be completely self-organizing and self-

configuring, without the need for any existing network

infrastructure or administration. It uses source routing which

means that the source must know the complete hop sequence

to the destination. Each node maintains a route cache, where

all the known routes are stored. The route discovery process is

initiated only if the desired route cannot be found in the route

cache.

To limit the number of route requests propagated, a node

processes the route request message only if it has not already

received the message and its address is not present in the route

Volume 2, issue 3, March 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 45

record of the message. The advantage is that intermediate

nodes can learn routes from the source routes in the packets

they receive.

The protocol is composed of the two main mechanisms of

"Route Discovery" and "Route Maintenance", which work

together to allow nodes to discover and maintain routes to

arbitrary destinations in the ad hoc network. The protocol

allows multiple routes to any destination and allows each

sender to select and control the routes used in routing its

packets, for example, for use in load balancing or for

increased robustness.

Route Discovery

Route Discovery is used whenever a source node desires a

route to a destination node. First, the source node looks up its

route cache to determine if it contains a route to the

destination. If the source finds a valid route to the destination,

it uses this route to send its data packets. If the node does not

have a valid route to the destination, it initiates the route

discovery process by broadcasting a route request message.

The route request message contains the address of the source

and the destination, and a unique identification number. An

intermediate node that receives a route request message

searches its route cache for a route to the destination. If no

route is found, it appends its address to the route record of the

message and forwards the message to its neighbors. The

message propagates through the network until it reaches either

the destination or an intermediate node with a route to the

destination. Then a route reply message, containing the proper

hop sequence for reaching the destination, is generated and

unicast back to the source node.

Route maintenance

Route Maintenance is used to handle route breaks. When a

node encounters a fatal transmission problem at its data link

layer, it removes the route from its route cache and generates a

route error message. The route error message is sent to each

node that has sent a packet routed over the broken link. When

a node receives a route error message, it removes the hop in

error from its route cache. Acknowledgment messages are

used to verify the correct operation of the route links.

DSR request and Reply

AODV

The Ad hoc On Demand Vector routing algorithm [5] is a

routing protocol designed for ad hoc mobile networks. AODV

is capable of both unicast and multicast routing. It is an on

demand routing algorithm, means that it builds routes between

nodes only as desired by the source nodes. It maintains these

routes as long as they are needed by the sources.

AODV uses sequence numbers to ensure the freshness of

routes. It is a loop-free, self starting and scales to large

number of mobile nodes. For example, node S intends to find

a route to node D, the process is shown in the below figure

AODV Routing Protocol Model

AODV builds routes using a route REQUEST and route

REPLY query cycle. When a source node desires a route to a

destination for which it does not have a route, it broadcasts a

route request (RREQ) packet across the network. Nodes

receiving the packet update their information for the source

node and set up backwards pointers to the source node in the

route tables. In addition to the source node’s IP address,

current sequence number and broadcast ID, the RREQ also

contains the most recent sequence number for the destination

of which the source node is aware. A node receiving the

RREQ may send a route reply (RREP) if it is either the

destination or if it has a route to the destination with the

corresponding sequence number greater than or equal to that

contained in the RREQ. If this is the case, it unicasts a RREP

back to the source. Otherwise, it rebroadcasts the RREQ.

Nodes keep track of the RREQ’s source IP address and

broadcast ID. If they receive a RREQ which they have already

processed, they discard the RREQ and do not forward it.

RREP propagates back to the source, nodes set up forward

pointers to the destination. Once the source node receives the

RREP, it may begin to forward data packets to the destination.

As long as the route remains active, it will continue to be

maintained. A route is considered active as long as there are

data packets periodically travelling from the source to the

destination along that path. Once the source stops sending data

packets, the links will timeout and eventually be deleted from

the intermediate node routing tables. If a link break occurs

while the route is active, the node upstream of the break

propagates a route error (RERR) message to the source node

to inform it of the now unreachable destination(s). After

receiving the RERR, if the source node still desires the route,

it can reinitiate route discovery.

Volume 2, issue 3, March 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 46

ABOUT NS-2

Ns-2 is an object-oriented simulator developed as part of the

VINT project at the University of California in Berkeley. Ns2

is extensively used by the networking research community. It

provides substantial support for simulation of TCP, routing,

multicast protocols over wired and wireless (local and satellite)

networks, etc.

Basic Architecture of NS

NS2 consists of two key languages: C++ and Object-oriented

Tool Command Language (OTcl). While the C++ defines the

internal mechanism (i.e., a backend) of the simulation objects,

the OTcl sets up simulation by assembling and configuring the

objects as well as scheduling discrete events (i.e., a frontend).

Main NS2 Simulation Steps

The followings show the three key steps guideline in defining

a simulation scenario in a NS2: [6][7][8]

Step 1: Simulation Design: The first step in simulating a

network is to design the simulation. In this step, the users

should determine the simulation purposes, network

configuration and assumptions, the performance measures,

and the type of expected results.

Step 2: Configuring and Running Simulation: This step

implements the design in the first step. It consists of two

phases:

Network configuration phase: In this phase network

components (e.g., node, TCP and UDP) are created and

configured according to the simulation design. Also, the

events such as data transfer that are scheduled to start at a

certain time.

Simulation Phase: This phase starts the simulation which was

configured in the Network Configuration Phase. It maintains

the simulation clock and executes events chronologically. This

phase usually runs until the simulation clock reached a

threshold value specified in the Network Configuration Phase.

Step 3: Post Simulation Processing: The main tasks in this

step include verifying the integrity of the program and

evaluating the performance of the simulated network. While

the first task is referred to as debugging, the second one is

achieved by properly collecting and compiling simulation

results.

Wireless node model in Ns2 [7]

CORE IMPLEMENTATION

Here we discuss how the three protocols i.e. AODV, DSR and

DSDV were simulated and implemented. We will present step

by step procedure of how to do all the things done by one

simulation in ns-2 with one Tcl scripts sequence:

Step 1: Create an instance of the simulator:

set ns_ [new Simulator]

Step.2: Setup trace support by opening file ―sample_trace.tr‖

and call the procedure trace-all

set tracefd [open sampletrace.tr w]

$ns_ trace-all $tracefd

Step 3: Create a topology object that keeps track of all the

nodes within boundary

set topo [new Topography]

Step 4: The topography is broken up into grids and the default

value of grid resolution is 1. A different value can be passed

as a third parameter to load_flatgrid {}.

$topo load_flatgrid $val(x) $val(y)

Step 5: Create the object God (General Operations Director) is

the object that is used to store global information about the

Volume 2, issue 3, March 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 47

state of the environment, network or nodes. The procedure

create-god is defined in $NS2_HOME/tcl/mobility/com.tcl,

which allows only a single global instance of the God object

to be created during a simulation. God object is called

internally by MAC objects in nodes, so we must create god in

every cases.

set god_ [create-god $val(nn)]

Step 6: Before we can create node, we first needs to configure

them. Node configuration API may consist of defining the

type of addressing (flat/hierarchical etc), for example, the type

of adhoc routing protocol, Link Layer, MAC layer, IfQ etc.

$ns_ node-config -adhocRouting $val(rp) \

-llType $val(ll) \

-macType $val(mac) \

-ifqType $val(ifq) \

-ifqLen $val(ifqlen) \

-antType $val(ant) \

-propType $val(prop) \

-phyType $val(netif) \

-channe

-channel [new $val(chan)] \

-topoInstance $topo \

-agentTrace ON \

-routerTrace ON \

-macTrace OFF \

-movementTrace OFF

Step 7: Create nodes and the random-motion for nodes is

disabled here, as we are going to provide node position and

movement (speed & direction) directives next

for {set i 0} {$i < $val(nn) } {incr i} {

 set node_($i) [$ns_ node]

 $node_($i) random-motion 0 # Disable random motion }

Step 8: Give nodes positions to start with, Provide initial (X,Y,

for now Z=0) co-ordinates for node_(0) and node_(1). Node 0

has a starting position of (5,2) while Node 1 starts off at

location (390,385).

$node_(0) set X_ 5.0

$node_(0) set Y_ 2.0

$node_(0) set Z_ 0.0

$node_(1) set X_ 390.0

$node_(1) set Y_ 385.0

$node_(1) set Z_ 0.0

Step 9: Setup node movement as the following example, at

time 50.0s, node1 starts to move towards the destination

(x=25, y=20) at a speed of 15m/s. This API is used to change

direction and speed of movement of nodes.

$ns_ at 50.0 "$node_(1) setdest 25.0 20.0 15.0”

Step 10: Setup traffic flow between the two nodes as follows:

TCP connections between node_(0) and node_(1)

set tcp [new Agent/TCP]

$tcp set class_ 2

set sink [new Agent/TCPSink]

$ns_ attach-agent $node_(0) $tcp

$ns_ attach-agent $node_(1) $sink

$ns_ connect $tcp $sink

set ftp [new Application/FTP]

$ftp attach-agent $tcp

$ns_ at 10.0 "$ftp start"

Step 11: Define stop time when the simulation ends and tell

nodes to reset which actually resets their internal network

components. In the following case, at time 150.0s, the

simulation shall stop. The nodes are reset at that time and the

"$ns_ halt" is called at 150.0002s, a little later after resetting

the nodes. The procedure stop{} is called to flush out traces

and close the trace file.

for {set i 0} {$i < $val(nn) } {incr i} {

$ns_ at 150.0 "$node_($i) reset"; }

 $ns_ at 150.0001 "stop"

 $ns_ at 150.0002 "puts \"NS EXITING...\" ;

$ns_ halt"

 proc stop {} {

 global ns_ tracefd nf

 $ns_ flush-trace

 close $tracefd

 close $nf

 }

Step 12: Finally the command to start the simulation is

 puts "Starting Simulation...\n" $ns_ run

So, these 12 steps could finish one time simulation, and we

can pack these 12 steps into one tcl file and do the simulation.

However, there exist some problems on such kind of use on

typical network performance test situations. Performance

testing usually needs to be scalable in the number of nodes

and network transmitting packets. Suppose in a network there

are hundreds of nodes, we need to set all of the nodes

positions and their movement, this needs a huge amount of

workload, also, suppose if we setup all the possible sources

and destinations and connections, it will be more complicated,

Furthermore, even if we can set them, we cannot guarantee

our input is randomly select, which is necessary for a fair

comparison.

To overcome this we can use some third party tools included

in ns-2.

NETWORK SCENARIO GENERATING [8]

For nodes positions and their movement, we can generate a

file with the statements which set nodes positions and nodes

movement using CMU generator.

It is under $NS2_HOME/indep-utils/cmu-scen-gen/setdest.

But, before we use it, we need to run ―make‖ to create

executable ―setdest‖ program.

In fact, this is a third party tool which is CMU's version

auxiliary scenario creation tool. It uses system dependent

/dev/random and calls the library functions initstate() for

generating random numbers.

Volume 2, issue 3, March 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 48

The usage of this executable command is:

/setdest [-n num_of_nodes] [-p pausetime] [-s maxspeed][-t

simtime] [-x maxx] [-y maxy] > [scenario_output_file]

For example, the command we use is like:

./setdest -n 40 -p 50.0 -s 10.0 -t 200 -x 500 -y 500 > scen-40-

test

This means, the topology boundary is 500m X 500m, the

scenario has 40 nodes with nodes’ max moving speed of

10.0m/s and the pause between movements is 50s. Also,

Simulation will stop in 200s, and finally, output generates tcl

statements into a file scen-40-test. Some fragments of scen-

40-test are shown in Figure below

Sample Scenario file

NETWORK TRAFFIC GENERATING [8]

For network traffic generating, we must generate statements

on sources, connections, and so on. This work could be done

by a tcl file, which is in $NS2_HOME/indep-utils/cmu-scen

gen/cbrgen.tcl.

For this network traffic generating tool, random traffic

connections of TCP and CBR can be setup between nodes. It

is used to create CBR and TCP traffic connections between

wireless nodes. In order to create a traffic-connection file, we

need to define the type of traffic connection (CBR or TCP),

the number of nodes and maximum number of connections to

be setup between them, a random seed and incase of CBR

connections, a rate whose inverse value is used to compute the

interval time between the CBR packets. So the command line

is:

ns cbrgen.tcl [-type cbr/tcp] [-nn nodes] [-seed seed][-mc

connections] [-rate rate]

Here, ―-type cbr/tcp‖ means define the type of traffic

connection, ―-nn nodes‖ means the number of nodes could be

used, ―-mc connections‖ means maximum number of

connections to be setup between those nodes, ―-seed seed‖

means a random seed, if it not equal to 0, the traffic pattern

will reappear if all the other parameters are the same. ―-rate

rate‖ means a rate whose inverse value is used to compute the

interval time, which is called as packets sending rate.

For an example:

ns cbrgen.tcl -type cbr -nn 40 -seed 1.0 -mc 20 -rate 4.0> cbr-

20-test

means create a CBR connection pattern between 40 nodes,

having maximum of 20 connections, with a seed value of 1.0

and a rate of 4.0 pkts/second. Figure shows one fragment of

traffic generating output

Sample Traffic file

To add them to main tcl file the following steps are done:

1. Add two variables in parameter options in the main tcl file

set val(sc) "/home/SUNIL/scenario/scen-40 test "

set val(cp) "/home/SUNIL/movement/cbr-40-test“

Here, ―/home/SUNIL/scenario/‖ could be on directory where

we store all your tcl files

2. In the main tcl file, just replace all the tcl statements which

are related to node placement and movement, and also traffic

creating with the following two statements

source $val(sc)

source $val(cp)

PERFORMANCE METRICS:

Packet Delivery Ratio =
Number of packets received successfully

Number of packets sent

 Average Throughput =
Total Received size

Elapsed time between sent and receive

 Average Routing Load =
Numbe r of Routing Control Packets

Total Simulation Time

 Average End to End Delay = ―Sum (for each i equal to

packet number, (packet i received time- packet i sent time))‖

Trace format

<event> <time> <Destination id> <MAC/AGT.RTR/IFQ>---

<seq no> <packet type><size><[exp time MAC sender ID

Mac Receiver ID MAC type]>----<[source IP Destination IP

TTL]><[tcp seq no tcp ck no]>

AWK SCRIPT TO ANALYZE TRACE FILES [9]

BEGIN {

 seqno = -1, droppedPackets = 0;

 receivedPackets = 0, count = 0;

 sentpackets = 0, ctrlpac = 0, pdf = 0;

}

{

if($4 == "AGT"&&$1=="s"&&seqno<$6) {

 seqno = $6;

Volume 2, issue 3, March 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 49

 sentpackets++;

 }

else if(($4 == "AGT") && ($1 == "r")) {

 receivedPackets++;

 }

else if ($1=="d"&&($7=="tcp"||$7=="cbr") && $8 > 512){

 droppedPackets++;

}

else if($4=="RTR"&&($1=="s" || $1 == "f") && ($7 ==

"DSR" || $7 == "AODV" || $7 == "message")) {

 ctrlpac++;

 }

 #end-to-end delay calculation

if($4 == "AGT" && $1 == "s") {

 start_time[$6] = $2;

 }

else if(($7 == "tcp"|| $7== "cbr")&& ($1 == "r")) {

 end_time[$6] = $2;

 }

else if($1 == "d" && ($7 == "tcp" || $7 == "cbr")) {

 end_time[$6] = -1;

 }

}

END {

for(i=0; i<=sentpackets; i++) {

 if(end_time[i] > 0) {

 delay[i] = end_time[i] - start_time[i];

 count++;

 }

 else{

 delay[i] = -1;

 }

 }

 for(i=0; i<=seqno; i++) {

 if(delay[i] > 0) {

 n_to_n_delay = n_to_n_delay + delay[i];

 } }

 n_to_n_delay = n_to_n_delay/count;

print "GeneratedPackets = " seqno+1;

print "SentPackets = " sentpackets; print

"ReceivedPackets = " receivedPackets;

pdf = receivedPackets/(sentpackets)*100

print "Packet Delivery Ratio = " pdf " %";

print"TotalDroppedPackets = " droppedPackets;

print "Average End-to-End Delay = " n_to_n_delay*1000

"ms" ;

print "Control Packets = "ctrlpac;

print "Average Routing Load = "ctrlpac/300;

}

SIMULATION PARAMETERS

Parameter Value

Transmission range 250 m

Simulation Time 300 s

Topology size 800m X 800m

No. of Mobile nodes 45

No. of Sources 20

Traffic Type CBR (Constant Bit Rate)

Packet Rate 8 packets/sec

Packet size 512 bytes

RESULTS

Graph 1 Packet Delivery Ratio

Volume 2, issue 3, March 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 50

Graph 2 Average END to END Delay

Graph 3Throughput

Graph 4 Routing Load

Graph 1 shows packet delivery ratio with pause time varying

from 0 to 300 for DSR, DSDV and AODV routing protocols.

The red line shows graph for DSR, the green line shows the

graph for DSDV and the blue line shows the graph for AODV

protocol. The delivery ratio for all the protocols is always

greater than 65 percent. The basic difference between these

protocols is very less. But generally the graph for the DSR

protocol lies above that of DSDV and AODV for most cases.

However in certain cases the DSDV protocols is also better.

Graph 2 shows the average end-to-end delay is less for the

DSDV approach than for the DSR approach, mean while

AODV maintains consistency in this performance metric. The

reason is that the periodic gateway information sent by the

gateways allows the mobile nodes to update their route entries

for the gateways more often, resulting in fresher and shorter

routes in DSDV. With the DSR (reactive approach) a mobile

node continues to use a route to a gateway until it is broken.

Graph 3 shows the result shows that the average throughput

for DSDV and DSR are better with high mobility nodes. At

the end of simulation times the AODV goes closer to the other

in Average throughput.

Graph 4 shows the routing overhead for AODV always in a

high peak rate when compared to the other protocols this is

because AODV periodically sends RREQ, RREP packets. The

routing overload for DSDV is less in all situations with any

number of nodes. The routing overhead for DSR is somewhat

closer to DSDV and which are far from AODV.

CONCLUSION

This simulation based study was conducted to evaluate the

performance of the MANET protocols DSDV, DSR, and

Volume 2, issue 3, March 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 51

AODV based on CBR traffic. The successful test on the

comparison shows that our performance evaluation

mechanism developed by this project is effective for scalable

performance test in NS-2. These routing protocols were

compared in terms of Packet delivery ratio, Average end-to-

end delay, Throughput and Routing load. Our simulations

have shown that performance of a routing protocol varies

widely across different performance differentials. It is

observed both AODV and DSR perform better in simulations

than DSDV. So we can conclude that DSR and AODV

outperforms DSDV for the CBR based traffic in Ad-hoc

networking environments, so DSR and AODV could be used

as a base protocol when we talk of developing a new protocol

for Ad-hoc networks and the future research must be focused

on improving and implementing the new protocol in Ad-hoc

networks.

REFERENCES

[1] D.P. Aggarwal and Qing-An Zeng. ―Introduction to

wireless and Mobile Systems‖. Brooks/Cole, 2005.

[2] C.E. Perkins & P. Bhagwat, ―Highly Dynamic Destination

Sequence-Vector Routing (DSDV) for Mobile

Computers‖, Computer Communication Review, vol. 24,

no.4, 1994, pp. 234-244.

[3] Cheng C, Riley R, Kumar SPR, Garcia-Luna-Aceves JJ

(1989) A Loop-Free Extended Bellman-Ford Routing

Protocol Without Bouncing Effect. ACM SIGCOMM

Computer Communications Review, Volume 19, Issue

4:224–236.

[4] Johnson, D.B. and D.A. Maltz, ―Dynamic source routing

in ad hoc wireless networks‖, Mobile Computing, 1996,

pp: 153-181.

[5] C.E. Perkins and E.M. Royer, ―Ad-Hoc on-Demand

Distance Vector Routing,‖ Proc. Workshop Mobile

Computing Systems and Applications (WMCSA ’99),

Feb. 1999 pp. 90-100.

[6] The network simulator - ns-2.

http://www.isi.edu/nsnam/ns/

[7] K. Fall and K. Varadhan (Eds.), ns notes and

documentation, 1999.

http://www.mash.cs.berkeley.edu/ns/

[8] NS by Example, http://nile.wpi.edu/NS/

[9] Awk - A Tutorial and Introduction - by Bruce Barnett.

Author’s profile:

Mr. G. Jose Moses is a Research Scholar in

the Department of Computer Science, Adikavi

Nannaya University, Rajahmundry, A.P.,

India. He obtained his B.Tech from JNTU,

Kakinada, M.Tech from Acharya Nagarjuna

University. His research interests lies in

Computer Networks, Cloud Computing.

Mr.D.Sunil Kumar is student in Department of

MCA. Government College, Rajahmundry,

A.P., India. His area of interest include

wireless communications and networking.

 Dr. P. Suresh Varma received the Master’s

degree M.Tech in Computer Science &

Technology from Andhra University. He

received Ph.D. degree in Computer Science &

Engineering from Acharya Nagarjuna

University. He is currently working as

Professor in Department of Computer Science in Adikavi

Nannaya University, Rajahmundry, A.P., India. He published

several papers in National and International Journals. He is

active member of various professional bodies. His current

research is focused on Computer Networks, Cloud Computing

and Data Mining.

 Mrs. N.Supriya Working as Academic

Consultant, in the department of Computer

Science, Adikavi Nannaya university,

Rajahmundry. She is at present pursuing Ph.D

at Acharya Nagarjuna University. Her

research interests lies in Software Engineering,

Data Mining and Computer Networks.

http://www.isi.edu/nsnam/ns/
http://www.mash.cs.berkeley.edu/ns/
http://nile.wpi.edu/NS/

