
© 2012, IJARCSSE All Rights Reserved Page | 94

 Volume 2, Issue 3, March 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Improving the Performance of Web Using Enhanced

Prefetching Algorithm

K.Ramu
1
, Dr.R.Sugumar

2
 and B.Shanmugasundaram

3

1
 Research Scholoar, Department of CSE,

Bharath University,Chennai, Tamilnadu, India

2
 Department of IT, R.M.D.Engineering College

Chennai, Tamilnadu, India

3
Department of CSE, Gojan School of Business &Tech

Chennai, Tamilnadu, India

ABSRACT-Due to the fast development of internet services and a huge amount of network traffic, it is becom-

ing an essential issue to reduce World Wide Web user-perceived latency. Web prefetching is a technique fo-

cused on web latency reduction based on predicting the next future web object to be accessed by the user and

prefetching it in idle times. So, if finally the user requests it, the object will be already at the client’s cache. The

basics of web prefetching techniques preprocess the user requests, before they are actually demanded. There-

fore, the time that the user must wait for the requested documents can be reduced by hiding the request laten-

cies. In this work, we introduce a simple and transparent enhanced prefetching algorithm which combines both

the top 10 and next-n prefetching approaches. In addition to using access-frequency as the criteria for pre-

fetching, the proposed algorithm also use the time of access of web documents to generate the top 10 list.

Keywords: Web cache, Web prefetch, Latency, Access time

I. INTRODUCTION

 Web prefetching is an effective tool for im-

proving the access to the World Wide Web. Pre-

fetching can be initiated either at the client side or at

the server side .The benefit of web prefetching is to

provide low retrieval latency for users, which can be

explained as high hit ratio. Prefetching also increases

system resource requirements in order to improve hit

ratio. Resources consumed by prefetching include

server CPU cycles, server disk I/O’s, and network

bandwidth. The prefetching technique has two main

components: The prediction engine and the prefetch-

ing engine. The prediction engine runs a prediction al-

gorithm to predict the next user’s request and provide

these predictions as hints to the prefetching engine.

The prefetching engine handles the hints and de-

cides to prefetch them or not depending on some con-

ditions like available bandwidth or idle time. Wcol

introduced by Chinen and Yamaguchi [2004] is a pre-

fetching proxy server for WWW. This program pre-

fetches referred pages (first n embedded images and m

linked documents to be more precise) from a user-

retrieved page. This scheme suffers from the drawback

that it is a deterministic approach and necessarily pre-

fetches a specified number of web objects linked to

the requested web page. This could lead to network

congestion and could result in prefetching large num-

ber of useless objects. The scheme has the advantage

of being very simple to implement.

The goal of this article is to design an en-

hanced prefetching algorithm that could be deployed at

the proxy level of network architecture. The focus of

the work is to make use of the popularity of the web

documents requested by the clients. To improve cache

performance, researches have introduced web prefetch-

ing to work in conjunction with web caching, which

means prefetching web documents from web servers,

even before the user requests them. Prefetching tech-

niques rely on predictive approaches to speculatively

retrieve and store web objects into the cache for future

use. Predictions on what to prefetch are made based

on different criteria such as history, popularity and

content.

II. WEBPREFETCHING

Web prefetching is a technique for reducing

network latencies. This area of research gains impor-

http://www.ijarcsse.com/

Volume 2, Issue 2, March 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 95

tance since, an user always expects an interactive re-

sponse, better satisfaction and quality of output. The

prefetching can be defined as “A reference that misses

in the object cache is prefetchable for a peak period if

the object:

– is cacheable

– exists at least since the beginning of the previous

off-peak period

– is not modified since the beginning of the pre-

vious off-peak period

Now the prefetching can be defined according

to World Wide Web as “A Web resource is prefetcha-

ble if and only if it is cacheable and its retrieval is

safe”. A number of commercial systems used today

implement some form of prefetching. There are

also a number of browser extensions for Netscape

and Microsoft Internet Explorer as well as some per-

sonal proxies that perform prefetching of links of the

current page. Many research papers have been pub-

lished on the use of prefetching as a mechanism to im-

prove the latencies provided by caching systems. There

are various types of Prefetching techniques exist

namely, Web Prefetching , Data Prefetching and Other

issues, Web Prefetching is further classified into

Cache Prefetching , Proxy Prefetching and Semantic

Prefetching , Data Prefetching is classified into

Content Prefetching and Context Prefetching.

III. DEPLOYMENT OF PREFETCHING ALGO-

RITHMS

Three main locations in the Internet where prefetching

algorithms can be deployed are:

A. Between browser clients and web servers.

 In this technique, the server computes the like-

lihood that a particular web page will be accessed next

and conveys the information to the clients. The client

program then decides whether of not to prefetch the

page. The prediction is done by a prediction by Predic-

tion by Partial Match (PPM) modal. A dependency

graph is constructed that depicts the pattern of accesses

to different files stored at the server. The graph has a

node for every file that has ever been accessed.

B. Between proxies and web servers.

 In this technique, the Web servers push the

pages to the proxies regularly. Without prefetching the

performance of the proxies is limited. This scheme

further reduces the latency. Geographical Push-

Caching where a Web server a Web server selectively

sends it documents to the caches that are closest to its

clients. Here the important issues is to maintain the

accurate network topology.

C. Between browser clients and proxies.

 The web prefetching can also be done between

browser clients and proxies. One approach is to predict

which cached documents a user might reference next

(based on PPM) and take the advantage of idle time

between user requests to push the documents to the

users. The first two approaches run the risk of increas-

ing wide area network traffic, while the last one only

affects the traffic over the modems or the LANs. All of

these approaches attempt to prefetch either documents

that are considered as popular at servers or documents

that are predicted to be accessed by user in the near

future based on the access pattern.

IV. REQUIREMENTS OF WEB PREFETCHING

ALGORITHMS

The web prefetching algorithms should be

carefully designed otherwise it can compromise the

overall efficiency of the network and could have ad-

verse effects on the network architecture. There are

three major requirements for a good web prefetching

algorithms namely minimize the user access latency,

maximize the prefetch hit ratio and maximize the

cache hit ratio.

A. Minimize the User Access Latency

Delays in access to Web based Information

continues to be a serious problem even with higher

network bandwidth, due to overhead web latency has

increased due to which web performance has de-

creased. User perceived latency from several sources

such as bandwidth, speed, overhead, accessing the web

page etc. In accordance of “Eight Second Rule”, it

can be observed that web latency affects the user work

and lot of efforts is taken to minimize the latency per-

ceived by the user. Caching of web documents has been

developed to reduce the latency but it has the drawback

that it stores the pages without any prior knowledge i.e.

the hit ratio is less. Web prefetching is an effective

technique to minimize user’s web access latency.

B. Maximize the Prefetch Hit Ratio and Cache Hit Ra-

tio

The Hit Ratio is a ratio of the requests that are serviced

from prefetched cache to the total number of requests.

Higher Hit Ratio can contribute more to the improve-

ment of the efficiency of cache. One way to further

increase the cache hit ratio is to anticipate future re-

quests and prefetch these objects into a local cache. On

the other hand, prefetching consumes more network

bandwidth. Web prefetching has been recognized as an

effective solution to maximize the hit ratio.

V. DESIGN OF ENHANCED PREFETCHING

ALGORITHM

The major objective of this paer is to design

and implement an Enhanced Prefetching Algorithm

Volume 2, Issue 2, March 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 96

(EPA) which combines both the top 10 and next-n pre-

fetching approaches. In addition to using access-

frequency as the criteria for prefetching, the proposed

system also use the time of access of web documents to

generate the top 10 list. This approach of using access-

frequency and time of access is known as the Greedy

Dual Size (GDS) Policy approach, which has been used

in cache management. Instead of generating next-n list

for all the documents accessed by the users, the system

log the next-n documents for the top 10 documents

only, thus reducing complexity and overhead. The En-

hanced Prefetching Algorithm is shown in Table I.

The idea of the EPA algorithm is to

keep the top ten popular documents for each web

server, by this means, clients or proxy servers can pre-

fetch only these popular documents without signifi-

cantly increasing network traffic. The proposed re-

sult shows that this approach expects more than

30% of client requests and achieves close to a 65%

hit ratio at the cost of increasing network traffic b y -

no more than 15% in most cases. This expe-

riment is close to the prefetching by Popularity algo-

rithm. The algorithm keeps copies of n most popular

objects in the cache and updates them immediately

whenever these objects are modified. From the Zipf-

like distribution, we know that popular objects are re-

sponsible for majority of requests from users. If

we keep in our cache copies of popular objects

which are most likely to be requested, this will defi-

nitely achieve the highest possible hit ratio. On the

other hand, its bandwidth consumption is high.

Table I Enhanced Prefetching Algorithm

The proposed EPA algorithm uses as input such global

access statistics as (1) estimates of object reference fre-

quencies and (2) estimates of object lifetimes. This es-

timation can be well maintained by content distribution

servers if they can collaborate between each other. Con-

tent serverscollect user access statistics and

 publish information of objects popularity

and patterns of usage; gather usage reports from their

users, aggregate and analyze them and make them

available to each other. They can also send prefetching

hints to each other or actively push to each other objects

that are likely to request in the near future. Whenever

the replicated object is updated in the original server,

the new version of it will be sent immediately to any

cache that has subscribed.

The Architecture of Enhanced Prefetching Al-

gorithm is illustrated in fig.1.In the proposed architec-

ture, the computations required during query execution

are not greatly affected by the number of results that

are to be prepared, as long as that number is relatively

small. In particular, it may be that for typical queries,

the work required to fetch several dozen results is just

marginally larger than the work required for fetching

10 results. Since fetching more results than requested

may be relatively cheap. Roughly speaking, result pre-

fetching is profitable if, with high enough probability,

those results will be requested shortly while they are

still cached and before the evicted results are requested

again. One aspect of result prefetching is analyzed in,

where the computations required for query executions

are optimized

Fig.1 Architecture of Enhanced Prefetching Algorithm

VI. SIMULATION AND RESULTS

The proposed system has performed all expe-

riments on a PC with Pentium IV and 2 GB RAM, un-

der the Windows XP using VB.Net. The performance

of the proposed Enhanced prefetching algorithm is

compared with the existing GDS for long-term Web

prefetching. GDS prefetching is based on

document size and has an elegant aging mechanism.

Procedure Prefetch (Array R, int M, float

maxSize)

//h, b are sequences of document

ids

Begin

1. PrefetchSeq = Ø

2. for each rule h -> b such that h < R

3. for each dUb such that d.size <

maxSize

4. PrefetchSeq = prefetchSeq U d

5. end for

6. end for

7. Sort documents in prefetchSeq

in decreasing order of the confi-

dence of the corresponding rule

and keep the first M ones.

8.

Reurn

prfetc

chSeq

 End

Volume 2, Issue 2, March 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 97

Similarly, the Greedy-Dual-Frequency (GDF) policy

takes into account file frequency and exploits the aging

mechanism to deal with cache pollution. The efficiency

of a cache replacement policy can be evaluated along

two popular metrics: file hit ratio and byte hit ratio.

Using four different web server logs, it shows that

GDS-like replacement policies emphasizing size yield

the best file hit ratio but typically show poor byte hit

ratio, while GDF-like replacement policies emphasiz-

ing frequency have better byte hit ratio but result in

worse file hit ratio. The Greedy-Dual-Frequency-Size

policy which allows to balance the emphasis on size

and frequency.

The objective of the proposed EPA algorithm

is to make use of the popularity of the web documents

requested by the clients. The popularity of web docu-

ments was calculated using two parameters the time

difference between two consecutive requests for the

same document and the access frequency of the same

document.

The following parameters are used to calculate

performance metrics of the EPA algorithm:

 Cache Hit: A cache hit is assessed when a user

requested document is fetched from cache.

 Cache Miss: A cache miss is assessed when a user

requested document is not present in cache.

 Top-10 Hit: A top-10 hit is assessed when a user

requested a document that is present in top-10

cache.

 Total Requests: This is the total number of re-

quests made by clients during the testing phase.

The metrics used to demonstrate the efficiency of

the EPA algorithm are:

 Cache Hit Ratio: If requested data is contained in

the cache (cache hit), this request can be served by

simply reading the cache. This is the ratio of the

total number of cache hits to the total number of

requests during the testing phase.

 Prefetch Accuracy: Prefetch accuracy is the per-

cent of prefetches that are accessed by demand

fetches before they are evicted from the cache.

 Prefetch Hit Ratio: This is the ratio of the total

number of prefetch hits to the total number of re-

quests where a prefetch hit is the sum of top-10

hits and next-n prefetch hits. This measures the

usefulness of predictions.

A. Improving the Prefetch Hit Ratio Using EPA

 Algorithm

This research work concentrates on the vari-

ous performance metrics such as prefetch accuracy and

prefetch hit ratio. The first metric used to describe the

performance of EPA algorithm is prefetch hit ratio. The

experiments are performed on different cache size of

256 MB, 512 MB and 1024 MB. Fig.2 illustrates the

graph of Prefetch Hit ratio and Cache size for GDS and

EPA algorithm. It can be seen that hit ratio of the pro-

posed EPA algorithm has improved compared to the

GDS algorithm. Whenever the hit ratio of a prefetching

algorithm is increased, then the specific document will

be moved into top-10 cache.

Table II Comparison of Hit Ratio and Cache size for

GDS and EPA algorithm

Cache

Size

(MB)

PrefetchHit

Ratio of GDS

algorithm

(%)

Hit Ratio of

EPA

algorithm

(%)

% of Hit

Ratio

improved

256 31.52 52.94 41.63

512 47.37 69.53 48.57

1024 76.51 91.12 62.42

From the Table II, it is clear that the prefet-

chhit ratio of the proposed algorithm is improved to

41.63%, 48.57%, and 62.42 for different cache size 256

MB, 512 MB RAM and 1024 MB RAM respectively.

Fig.2 Performance Comparison of Prefetch Hit Ratio vs

Cache size

B. Improving the Prefetch Accuracy Using EPA Algo-

rithm

The next metric which is used to demonstrate

the performance of web prefetching algorithm is Pre-

fetch Accuracy. The experiments are performed on dif-

ferent cache size of 256 MB, 512 MB and 1024 MB.

The Fig.3 illustrates a graph of Prefetch Accuracy and

Cache Size for GDS and EPA algorithm. It can be seen

that hit ratio of the proposed EPA algorithm has im-

proved to 42.78%, 50.09%, and 63.42 for different

cache size of 256 MB, 512 MB and 1024 MB com-

pared to the GDS algorithm. Whenever the prefetch

Volume 2, Issue 2, March 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 98

accuracy of a prefetching algorithm is increased, then

the specific document will be moved into top-10 cache.

TABLE III Comparison of Accuracy and Cache size

for GDS and EPA algorithm

Cache

Size

(MB)

Prefetch

Accuracy of

GDS

algorithm

(%)

Prefetch

Accuracy of

EPA

algorithm

(%)

% of

Accuracy

improved

256 35.19 56.35 42.78

512 45.37 64.53 50.09

1024 78.24 94.62 63.42

From the Table III, it is clear that the accuracy of

the proposed algorithm is improved to 42.78%,

50.09%, 63.42 for different cache size 256 MB RAM,

512 MB RAM and 1024 MB RAM respectively.

Fig.3 Performance Comparison of Accuracy vs Cache

size

C. Improving the Cache Hit Ratio Using EPA Algo-

rithm

The next metric which is used to demonstrate

the performance of web prefetching algorithm is cache

hit ratio. The experiments are performed on different

cache size of 256 MB, 512MB and 1024 MB. The

Fig.4 illustrates a graph of cache hit ratio and Cache

Size for GDS and EPA algorithm. It can be seen that hit

ratio of the proposed EPA algorithm has improved to

44.37%, 49.70%, 53.32for different cache size of 256

MB, 512MB and 1024 MB compared to the GDS algo-

rithm. Whenever the cache hit ratioof a prefetching

algorithm is increased, then the specific document will

be moved into top-10 cache.

TABLE IV Comparison of Cache hit ratio and Cache

size for GDS and EPA algorithm

Cache

Size

(MB)

Cache Hit

Ratio of GDS

algorithm

(%)

Cache Hit

Ratio of

EPA

algorithm

(%)

% of Hit

Ratio

improved

256 38.86 56.27 44.37

512 59.30 81.19 49.70

1024 82.68 90.64 53.32

Fig.4 Performance Comparison of Cache hit ratio vs

Cache size

From the Table IV, it is clear that the cache hit

ratio of the proposed algorithm is improved to 44.37%,

49.70%, and 53.32% for different cache size 256 MB,

512 MB and 1024 MB RAM respectively.

VII. OTHER RESEARCH DIRECTIONS

Web Prefetching is an elegant technique to

handle information provisioning for users under these

circumstances. In this paper, new strategies for pre-

fetching in a location-aware surrounding are investi-

gated. The mechanism, as well as the underlying loca-

tion model, could however also be transferred to other

application areas such as railway networks and high-

ways. The dynamic service priority allocation and the

development of location-aware cache invalidation algo-

rithms are the focus of research in this area. To over-

come the problem of long retrieval latency caused by

the unpredictable user behaviors during multimedia

presentation, a prefetching scheme using the associa-

tion rules from the data mining technique was pro-

posed. The data mining technique can provide some

priority information such as the support, confidence,

and association rules which can be utilized for pre-

fetching continuous media. The prefetching policy can

predict user behaviors and evaluate segments that may

be accessed in near future. The results show that the

Volume 2, Issue 2, March 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 99

prefetching approach can get better latency reduction,

even for small cache size.

Web Prefetching can be applied in various

domains to improve the system performance. A loca-

tion-aware prefetching mechanism is introduced that is

independent of any additional infrastructure and that

gathers information solely over deployed, lowband-

width wireless links. Location-awareness becomes

more and more important for delivering relevant data.

The latter is a challenging task when dealing with unst-

able and low-bandwidth wireless networks, especially

in areas that are not or only poorly covered.

VIII CONCLUSIONS

An Enhanced Prefetching Algorithm has

been designed and implemented that could be deployed

at the proxy level of network architecture. The perfor-

mance of EPA approach for 256 MB, 512 MB and 1024

MB cache size compared with the existing GDS algo-

rithm. The proposed algorithm used the time of access

of web documents to generate the top 10 list. The re-

sults obtained from simulations, in terms of cache hit

ratio, prefetch hit ratio and prefetch accuracy shows the

efficiency of the proposed algorithm as compared to

other approaches. This research work has focused on

making use of the popularity of the web documents

requested by the clients.

REFERENCES

[1] Bin Wu; Ajay D. Kshemakalyani. "Objective-Greedy Algorithms

for Long-Term Web Prefetching”, Proceedings IEEE International

Symposium, NCA’04, U. S. A, 2004.

[2] Bin Wu; Ajay D. Kshemakalyani. "Objective optimal algorithm
for long term web prefetching", Journal of IEEE Transactions on

Computers, Vol. 55, Issue 1, 2006.

[3] L.Cherkasova, “Improving WWW proxies performance with

Greedy-Dual-Size-Frequency Caching Policy”, in HP Technical

report, 2008.

 [4] V. N. Padmanabhan; J. C. Mogul. “Using Predictive Prefetching

to Improve World Wide Web Latency”, Proceedings ACM Confe-
rence, SIGCOMM, 2008.

 [5] Evangelos P. Markatos & Catherine E. Chronaki, “A Top-10
Approach to Prefetching on the Web, Proceedings of INET’ 98,

1998.

[6] Domenech J., Sahuquillo J., Gil J. A., and A. Pont , “The impact

of the web prefetching architecture on the limits of reducing user’s

perceived latency”, Proceedings of /ACM International Conference

on Web Intelligence,pp.155-178, 2006.

[7] De la Ossa, J. Sahuquillo, A. Pont, J. A. Gil , "An Empirical

Study on Maximum Latency Saving in Web Prefetching", IEEE

International Joint Conference on Web Intelligence and Intelligent

Agent Technology, vol. 1, pp.556-559,2009

[8] Sarina sulaiman siti, Ajith Abraham shahida Sulaiman, “Web

caching and prefetching what, why, and how”, Proceedings of IEEE

International Symposium on Information Technology,pp.1-8, 2008

[9] Umapathi C. and J. raj, “Prefetching algorithm for improving

web cache performance”, Journal of application science Asian net-

work scientific information, pp. 3122- 4127, 2008.

[10] Markatos E.P. and Chronaki C.E., “A Top-10 Approach to Pre-

fetching on the Web”, Proceedings of 12th INET International Confe-

rence, pp.228-241, 2009.

[11] Chen X. and Zhang X., “A popularity-based prediction model

for web prefetching”, IEEE Computer Society Press Los Alamitos,

pp.109-123, 2010.

[12] Chen X, Zhang X., “Popularity-based PPM: an effective web

prefetching technique for high accuracy and low storage”, Proceed-

ings of the international conference on parallel processing. pp.75-93,

2010.

[13] Patil J. B. and Pawar B. V., “GDSF : A Better Algorithm that

Optimizes Both Hit Rate and Byte Hit Rate in Internet Web Servers”,

International Journal of Computer Science and Applications, Vol. 5,

No. 4, pp. 1-10, 2007.

[14] Markatos E. and Chironaki C., “A Top 10 Approach for Pre-

fetching the Web”, Proceedings of INET Conference, Geneva, Swit-

zerland,pp.237-249, 2006.

[15] Jin S. and Bestavros A., “ Popularity-aware greedydual-size

web proxy caching algorithms”, Proceedings of the 20th International

Conference on Distributed Computing Systems, pp.357-378, 2009.

[16] Zhijie B., Zhimin G. and Yu J, “A Survey of Web Prefetching”,

Journal of computer research and development, Vol. 46(2), pp. 202-

210, 2010.

[17] Jiang Y., Wu M.Y, and Shu W. (2010), “Web prefetching : Costs

, benefits and performance”, Proceedings of the 11th International

World Wide Web Conference, New York,pp.472-483.

[18] Bin W., and Kshemkalyani A. D. (2008), “Objective-greedy

algorithms for long-term Web prefetching”, Proceedings of Third

IEEE International Symposium on Network Computing and Applica-

tions, pp.521-542.

Biography

K.Ramu has received his Undergraduate Degree in

Computer Science and Engineering from Madras Uni-

versity, in 2002 and the Post Graduate degree in Com-

puter Science and Engineering from Sathyabama Uni-

Volume 2, Issue 2, March 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 100

versity, Chennai in 2005. He is pursuing his PhD in

Faculty of Computer Science Engineering from Bha-

rath University, Chennai. He has more than 5 publica-

tions in National Conferences and international journal

proceedings. He has more than 10 years of teaching

experience. His areas of interest include Data Mining,

Data Structures, Database Management Systems, Dis-

tributed systems and Operating systems.

Sugumar.R has received his Undergraduate Degree in

Computer Science and Engineering from Madras Uni-

versity, in 2003 and the Post Graduate degree in Com-

puter Science and Engineering from Dr.M.G.R. Educa-

tional and Research Intituite, Chennai in 2007. He has

completed his PhD in Faculty of Computer Science

Engineering from Bharath University, Chennai in

2011.He has more than 15 publications in National

Conferences and international journal proceedings. He

has more than 8 years of teaching experience. His areas

of interest include Data Mining, Data Structures, Data-

base Management Systems, Distributed systems and

Operating systems. He is currently working as an As-

sistant Professor in the Department of Information

Technology at R.M.D.Engineering College, Chennai,

India. He is an active researcher in data mining, Web

mining and Information Retrieval.

B.Shanmugasundaram has completed his M.C.A

from Madurai Kamaraj University during 2002 and

completed his M.Tech in Computer Science and Engi-

neering from Dr.M.G.R. Educational and Research

Intituite, Chennai during 2011. He has more than 4

years of teaching experience. He has 6 publications in

National Conferences and international journal pro-

ceedings. His areas of interest include Database Man-

agement Systems, Distributed systems OOAD, Soft-

ware Engineering, Software project management and

Computer networks. He is currently working as an As-

sistant Professor in the Department of Computer

Science and Engineering at Gojan School of Business

and Technology, Chennai, India.

