
ISSN: 2277 128X

ISBN: 2277 6451

International Journal of Advanced Research in

Computer Science and Software Engineering
A Monthly Journal of Computer Science

Volume- 4, Issue-3 , March-2014

eYefDolV lwpdkad dh lax.kuk ds fy,

vkWu ykbZu lkWW¶Vos;j dk fodkl

Development of Online Software for Computation of

Malmquist Index

--By Sarita Kumari

(IJARCSSE)

Indian Agricultural Statistics Research Institute

Indian Agricultural Research Institute

New Delhi-110012

2013

- i -

eYefDolV lwpdkad dh lax.kuk ds fy,

vkWu ykbZu lkWW¶Vos;j dk fodkl

DEVELOPMENT OF ONLINE SOFTWARE FOR

COMPUTATION OF MALMQUIST INDEX

Sarita Kumari
(20050)

Indian Agricultural Statistics Research Institute

Indian Agricultural Research Institute

 New Delhi-110012

 2013

- ii -

- iii -

- iv -

Dedicated To

MA, BABUJI, Bubu and my elders

- v -

Acknowledgements

First and foremost I want to thank chairperson of my advisory committee Dr. Alka Arora, Senior

Scientist, IASRI, New Delhi. It has been an honor to be her M.Sc student, she had taught me both consciously

and unconsciously, the way I can do my work best. I am also thankful for her valuable suggestions and

constant encouragement from time to time for completion of my research work.

I am also highly grateful to Dr. Rajni Jain, co-chairperson of my Advisory committee for all the

guidance she provided for my thesis work. I am thankful to her for all the moral support during the course of

my work and for her excellent ideas that she provided me for the betterment of my software. She gave me

constant encouragement from time to time for completion of my research work. I am also really thankful to her

for providing her valuable time and helping me in understanding the basic concepts regarding my research

work. I would also like to express my sincere thanks to Dr. Sudeep, Senior Scientist, IASRI for providing his

valuable guidance. I would like to express my deep appreciation and gratitude to Dr. Anshu Bhardwaj,

Scientist, IASRI, for being in my Advisory Committee and for her excellent teaching and help from time to

time. It is great privilege for me to express my esteem and profound sense of gratitude to Dr. Amrender Kumar,

Minor member of my Advisory Committee for his constructive and valuable suggestions, inquisitiveness,

constructive criticisms and constant encouragement from time to time.

 I am indebted to Dr. U. C. Sud, Director, IASRI and Dr. P.K.Malhotra, Professor, Division of

Computer Applications, IASRI, for providing all the necessary research facilities, valuable suggestions

throughout the study. I am also indebted to Dr. A.K.Chaubey, Head (C.A) for providing all the facilities.

 I would also like to express my deep appreciation and gratitude to Dr. Bishwanath Goldar, Institute

of Economic Growth, Delhi, for his excellent lecture which helped me in understanding the subject matter of

my research work.

 I would like to express my special gratitude and thanks to my senior A.K.M.Samimul Alam for his

valuable suggestions and help throughout my research work. I am indebted to my classmates Tanuj Mishra and

Kamalika Nath for providing a stimulating and fun environment in which learning and doing work was so

interesting.

- vi -

 My special gratitude and loving thanks are due to my beloved friends Neha, Sonal Khare and Priya

for being helpful to me and encouraging me to do better whenever I have faced any kind of problem.

 I am also indebted to Dr. H. S. Gupta, Director, IARI, New Delhi and Dr. Vijay Raghavan, Dean,

PG School, IARI, for providing necessary facilities to carry out this work. Finally, the Fellowship awarded by

IARI is gratefully acknowledged.

 I would like to thank Head and other staff members of Training and Administrative Cell, IASRI, for

their invaluable administrative help throughout my course work.

 Words fail to express my appreciation for my best friend Mr. Nagendra Mishra, whose support and

persistent confidence in me has taken the load off my shoulder. I owe him all the emotional support,

camaraderie, entertainment and caring that he provided. I would also thank my elder sister Mrs. Jaya Jha, who

always treated me like a child and helped me in managing my life in a completely new place. Whatever I do for

her in my life will be less as compared to what she did for me. I would also like to thank my elder sisters

Shanta di and Seema di and my bhaiji, Alok Nandan Jha for their tender love and affection that they bestowed

on me. I would also like to express my love to my sweet nephews Aniket, Ankur and Ayush and beautiful

nieces Khushi and Tarushi.

 A special note of thanks are due to my wonderful parents, my ma (Mrs. Prabha Jha) and my Babuji

(Mr. Lakshmi Nandan Jha), who have kept their faith in me and have given me unflinching support

throughout my academic career. I cannot ask for more from them. I have no suitable word that can fully

describe their everlasting love for me. They taught me how to face the difficulties of life with patience and

courage. They have helped me financially, morally and spiritually. Ma and Babuji, a billion thanks to you. I

love you both so much.

 Last but not least, thanks to God for helping me to live my life through all tests in the past

years. You have made my life more bountiful. May your name be exalted, honored and glorified.

Date:

New Delhi-110012 (SARITA KUMARI)

- vii -

CONTENTS

Title Page No.

Chapter-I Introduction 1-3

1.1 Introduction 1

1.2 Objectives 2

1.3 Organisation of Thesis 3

Chapter-II Background 4-15

2.1 Total Factor Productivity Growth 4

2.1.1 Data Envelopment Analysis 4-7

2.1.2 Malmquist Index 7-9

2.1.3 Example 9-12

2.2 Review of Work Done 12

2.3 Review of Software 13-14

2.4 Summary 15

Chapter-III Material and Methods 16-30

3.1 Software Architecture 16-26

3.1.1 User Interface Layer 16-26

3.1.1.1 Hyper Text Mark-up Language 17

3.1.1.2 JavaScript 17

3.1.1.3 Cascading Style Sheets 18

3.1.2 Application Layer 18-24

3.1.2.1 .NET Framework 18-20

3.1.2.2 ASP.NET 21-24

3.1.2.3 C# 24

3.1.3 Database Layer (DBL) 24-26

3.2 Software Development Environment 27-28

3.2.1 Visual Studio 2010 27-28

3.3 Microsoft Solver Foundation Library 29-30

- viii -

3.4 Conclusion 30

Chapter-IV Research papers 31-55

4.1 Online Software for Computation of Malmquist

Index(MalmSoft)
31-46

4.1.1 Introduction 32-33

4.1.2 Malmquist Index 33-35

4.1.3 MalmSoft Design 35-36

4.1.4 MalmSoft Development Methodology 37

4.1.5 Malmquist Index Computation

 Interface
37-43

4.1.5.1 Input Data Handling 39-41

4.1.5.2 Malmquist Index Computation 42

4.1.5.3 Saving Results 43

4.1.5.4 Online Help 43

4.1.6 Testing and Verification 44-45

4.1.7 Conclusion 46

4.2 Analysis of TFP growth in Bihar using MalmSoft 47-55

4.2.1 Introduction 47

4.2.2 Experimental Data 48-49

4.2.3 Results and Discussion 49-54

4.2.4 Conclusion 55

Chapter-V General Discussion 56-57

Chapter-VI Summary 58-59

Chapter-VII Abstract (English, Hindi) 60-61

References 62-64

Appendix 65

- ix -

LIST OF FIGURES

Sl. No. Title Description Page No.

1 Figure 2.1 Production Possibility set for period t and t+1 6

2 Figure 2.2 Sample Dataset 10

3 Figure 3.1 Three-Tier Architecture of MalmSoft 16

4 Figure 3.2 Structure of .NET Framework 19

5 Figure 3.3 Communications between server and client 21

6 Figure 3.4 ASP.NET Page 22

7 Figure 3.5 Visual Studio 2010 Page 28

8 Figure 4.1.1 Hierarchical Structure of Software Design 37

9 Figure 4.1.2 Home Page of MalmSoft 38

10 Figure 4.1.3 Home Page of MalmSoft after login 39

11 Figure 4.1.4 Browse and Upload Excel File 41

12 Figure 4.1.5 Data Verification 41

13 Figure 4.1.6 Output Screen for distance function 42

14 Figure 4.1.7 Output Screen for Malmquist Index 43

15 Figure 4.1.8 Online Help 44

16 Figure 4.1.9 Result Page for distance function using MalmSoft 45

17 Figure 4.1.10 Result Page for distance function using DEAP 45

18 Figure 4.1.11 Result Page for Malmquist Index using MalmSoft 45

19 Figure 4.1.12 Result Page for Malmquist Index using DEAP 45

20 Figure 4.2.1 Malmquist Index for the period 2003-2004 50

21 Figure 4.2.2 Malmquist Index for the period 2004-2005 51

22 Figure 4.2.3 Malmquist Index for the period 2005-2006 52

23 Figure 4.2.4 Malmquist Index for the period 2006-2007 53

- x -

LIST OF TABLES

Sl. No. Title Description Page No.

1 Table 4.1.1 Modules in MalmSoft 36

2 Table 4.1.2 Sample Input Data Sheet 40

3 Table 4.1.3 Sample Output Data Sheet 40

4 Table 4.2.1 Sample Input Data for Bihar 48

5 Table 4.2.2 Sample Output Data for Bihar 49

6 Table 4.2.3 Growth of MI in Bihar during 2003-2007 54

7 Table 4.2.4 Comparison of District-level TFP growth 54

- 1 -

CHAPTER-I

INTRODUCTION

1.1 Introduction

 Productivity and Efficiency are the two concepts commonly used to measure an

agricultural firm‟s resource utilization performance. Productivity is mainly a measure of output

per unit of input. Total Factor Productivity (TFP) measures the growth of net output per unit of

total factor inputs. Efficiency, on the other hand, is the comparison of what is actually produced

with what can be produced with the same consumption of resources (Farrell, 1957). Technical

Efficiency is a type of efficiency which reflects the ability of a firm to obtain maximal output

from a given set of inputs (Farrell, 1957). It may be defined as the ratio of actual output to the

potential/optimal output from a given bundle of inputs and given technology. The twin objective

of efficient resource utilization by an agricultural firm are: a) To produce as much output as

possible from a specific quantity of inputs, and at the same time, b) To produce specific quantity

of output using as little input as possible. Malmquist Index is a non-parametric method which

uses Data Envelopment Analysis (DEA) Approach to measure TFP change between two time

periods. DEA is a linear programming based technique for measuring the relative performance of

agricultural firms where the presence of multiple inputs and outputs make the comparison

difficult (Seiford et al., 1990).

Recognizing the critical role of agricultural sector in the overall growth as well as

development performance, there is a need for the development of software packages which can

be used for computation of Total factor productivity growth in agriculture sector. Malmquist

Index is one of the important TFP index which is used for measuring the total factor productivity

change. Malmquist Index Computation facility is not available in any of the web based software

packages. Researchers mainly uses excel spreadsheets for data preparation and solve repetitive

complex linear programming calculations through a program solver or compute Malmquist Index

using a DOS based software DEAP developed by Tim J Coelli (Coelli, 2008). Besides being

tedious, chances of occurrence of errors are also high using such methods. Web based software

- 2 -

allows computation, involving such complex data intensive repeated calculations, to be solved

quickly and conveniently by researchers. During interactions with agricultural researchers it was

observed that, there is a great need to develop one such online software for computation of

Malmquist Index which should be user-friendly. Further the software should be made available

on the web so that it can be used by other researchers without the hassles of software

procurement, checking compatibility issues and installation problems.

In the field of agriculture, a number of software packages like Expert System, Statistical

Packages, agro-advisories software etc. have been developed for the use of farmers.

Development of such software requires blending of expertise for software development and

knowledge regarding that particular subject. So, this dissertation is an attempt to develop one

such online software named MalmSoft, which should provide online facility for computation of

Malmquist Index.

1.2 Objectives

 The efforts in this dissertation are directed towards development of online

software for computation of TFP change with the following major objectives:

1. To study the methodology for computation of Malmquist Index.

2. To develop online software for computation of Malmquist Index.

3. To test the software with agricultural dataset.

1.3 Organization of Thesis

This thesis deals with various aspects of development of online software for computation of

Malmquist Index. The whole thesis is divided into six chapters.

Chapter-II: Introduces the concept of TFP growth computation using Malmquist Index with the

help of an example from the literature available in this field. It also covers review of software

and work done in agricultural sector for Malmquist Index.

Chapter-III: Discusses the architecture and tools used for design and development of this

software. Microsoft Solver Foundation Library, which is used for solving the complex linear

- 3 -

programming problems involved in Malmquist Index computation is also explained in this

chapter.

Chapter-IV: Results in the form of two research papers, first one entitled “Online Software for

Computation of Malmquist Index (MalmSoft)” and the second entitled “Analysis of TFP growth

in Bihar using MalmSoft” have been presented in section 4.1 and section 4.2 respectively.

Chapter-V: This chapter presents the discussion on the Malmquist Index along with working of

the software.

Chapter-VI: Summary about the complete research work is given in this chapter followed by

Abstract and References. Sample source code is given at the end in Appendix.

- 4 -

CHAPTER-2

BACKGROUND

This chapter provides introduction about TFP growth and details about Data Envelopment

Analysis which forms the basis for computation of Malmquist Index. The detail methodology for

computation of TFP growth using Malmquist Index has also been explained with the help of a

small example. The chapter also provides review of work done in the field of TFP growth

measurement in agricultural sector.

2.1 Total Factor Productivity Growth

Analysis of Total Factor Productivity (TFP) measures the increase in total output which

is not accounted for by increase in total inputs (Kumar et al., 2004). The TFP index is computed

as the ratio of an index of aggregate output to an index of aggregate inputs. In other words, TFP

growth refers to the amount of growth in real output that is not explained by the growth in inputs.

TFP at particular time is sensitive to the units of measurement of inputs and outputs, they are

rarely estimated; instead TFP growth estimation is preferred.

2.1.1 Data Envelopment Analysis (DEA)

This section briefly describes the concept of Data Envelopment Analysis as well as distance

function, which is used in computation of Malmquist TFP index.

Let the set theoretic representation of a production function that involves multiple outputs

and inputs technology be described as the technology set S. Let x and y denote a N*1 input

vector of non-negative real numbers and a non-negative M*1 output vector, respectively. The

technology set is then defined as:

S= {(x, y): x can produce y} (1)

This set consists of all input-output vectors (x, y) such that x can produce y.

- 5 -

The production frontier represents the maximum output attainable from each input level. It

constructs a benchmark technology from among the observed input-output bundles of the firms

in the sample. The piece-wise linear convex hull approach to estimate frontier was proposed by

Farrell, 1957 but the application of this methodology increased only after the term Data

Envelopment Analysis was coined by Charnes et al.,1978. Data Envelopment Analysis (DEA), a

non-parametric approach to frontier estimation, involves the use of linear programming methods

to construct a piece-wise surface (or production frontier) over the data points such that the

constructed frontier envelops all given data points, that is, all observed data points lie on or

below the production frontier (Charnes et al., 1978).

DEA uses Distance Functions that allow us to describe a multi-input, multi-output

production technology without any specification of a behavioural objective (such as cost-

minimization or profit-maximization). The concept of distance function is closely associated

with production frontiers. Distance functions can be output-oriented or input-oriented. An output

distance function considers the maximum proportional expansion of the output vector

corresponding to a given input vector. It measures the distance of a firm from its production

frontier- how close a particular level of output is to the maximum attainable level of output that

could be obtained from the same level of inputs if production is technically efficient. Efficiency

is the comparison of what is actually produced or performed with what can be achieved with the

same consumption of resources (Farrell, 1957). A production firm is said to be technically

efficient if it is able to produce maximal output from the given bundle of inputs and given

technology. Fare et al., (1994) defined an output distance function at time t as

 (2)

Distance function is defined as the inverse of the maximum proportional increase in the output

vector y
t
, given the set of inputs x

t
 and production technology S

t
. The superscript t associated

with D refers to which period‟s production frontier is used as reference technology. The

calculation of distance functions and how they can be used to give insights about efficiency

change and technical change is illustrated diagrammatically in Figure 2.1.

- 6 -

In Figure 2.1, production possibility sets are depicted for period t and t+1. Firm B is lying on the

frontier in both the time periods, implying it is fully technically efficient. Firm A lies inside the

production frontier. For firm A, the distance from the production point in time period t to the

frontier in time period t, that is, D
t
o(xt,yt) is given by OAt/ OBt. This ratio is less than one as the

firm is inefficient. In case of firm B, the distance from its production point to the frontier shall be

equal to one as it lies on the frontier. Firm A‟s distance of its production point from the frontier

in time period t+1, D
t+1

o(xt+1,yt+1), is given by OAt+1/ OBt+1. The comparison of these two

distance functions tells about the performance of firm A on efficiency front. If firm A has

become more efficient in time period t+1 than it was in time period t, then its production point in

t+1 would be closer to the same period frontier than in the preceding period. In other words, the

distance computed from D
t+1

o(xt+1,yt+1) would be greater than D
t
o(xt,yt).

The above distances are calculated from same period‟s production frontier. However, the

distances can also be computed using some other period‟s production frontier / technology as

well. For example, for firm A, distance of its production point in time period t can be calculated

with respect to frontier of time period t+1. This distance, D
t+1

o(xt,yt) is given by OAt/ OBt+1.

Similarly, the distance of firm A‟s production point in time period t+1 can be computed using

O Y1

Y2

Bt+1

At

At+1

Pt+1(x)

Figure 2.1: Production possibility set for period t and t+1

Pt(x)

Bt

●

●

- 7 -

time period t‟s frontier as reference technology. This distance, D
t
o(xt+1,yt+1), is given by OAt+1/

OBt. A comparison of these mixed-period distance functions can tell us about whether or not

technical change has taken place. If what is produced in time period t+1 could not have been

produced in time period t, then the distance D
t
o(xt+1,yt+1) would be greater than one. Similarly, if

the distance computed of period t‟s production point from period t+1‟s frontier exceeds that from

period t‟s frontier, that is D
t+1

o(xt,yt) > D
t
o(xt,yt), then it implies an outward shift of production

frontier in time period t+1 (Coelli et al., 2005).

Under the Data Envelopment Analysis (DEA) methodology, TFP growth is estimated as

the changes in Malmquist productivity index. A major advantage in the use of DEA in measuring

productivity growth is that this method does not require any price data. This is a distinct

advantage, because in general, agricultural input price data are seldom available and such prices

could be distorted due to government intervention. The DEA seems to be a much more powerful

tool for measurement of productivity since it makes the least number of restrictive assumptions

(no functional form of production function / distribution form of inefficiency). However, the

disadvantage of DEA is that it does not account for noise and the conventional tests of

hypotheses cannot be carried out.

2.1.2 Malmquist Index

Malmquist Productivity index was first introduced by Caves et al. (1982) and was empirically

applied by Fare et al. (1994). Fare et al.(1994) developed a non-parametric approach for

estimating the Malmquist index and showed that the component distance function could be

derived using a DEA-like linear program method.

Malmquist Index is used to measure the total factor productivity change of a production

unit between two time periods by using the method of Data Envelopment Analysis (DEA)

(Caves et al.,1982). Total Factor Productivity measures the growth of net output per unit of total

factor inputs. The Malmquist index is defined using Distance functions. The output-oriented

Malmquist TFP growth index is defined using the formula given below:-

0 0
0

0 0

(,) (,)
(, , ,)

(,) (,)

s t
t t t t

s s t t
s t

s s s s

d y x d y x
m y x y x

d y x d y x

- 8 -

In the above formula, the distance function
0 (,)s

t td y x

represents distance from period „t‟ observation to period „s‟ technology. In order to calculate

Malmquist Index, i.e. to measure TFP change between two time periods, we need to calculate

four distance functions for each production unit (Fare et al., 1994). This requires solving of

following four linear programming problems for each production unit:-

1

01. , max

. . 0

t
t t

it t

it t

d y x

s t y Y

x X

1

02. , max

. . 0

0

0

s
s s

is s

is s

d y x

s t y Y

x X

1

03. , max

. . 0

0

0

t
s s

is t

is t

d y x

s t y Y

x X

1

04. , max

. . 0

0

0

s
t t

it s

it s

d y x

s t y Y

x X

- 9 -

In the above linear programming problems,

iy is an M1 vector of output quantities for thi production unit.

ix is a K1 vector of input quantities for thi production unit.

Y is a NM vector of output quantities for all N production units.

X is an NK vector of input quantities for all N production units.

 is an N1 vector of weights. is a scalar.

Each of the above linear programming problems when solved produce and a vector. The

vector gives information on the technical efficiency score for the thi unit and the vector

provides information on the peers of the thi unit. After calculating m₀ value using the above

Malmquist Index formula, we can check for TFP growth using the following conditions:-

i. If value of m₀ >1, this indicates a positive TFP growth from period s to period t.

ii. If value of m₀ < 1, this indicates decline in TFP from period s to period t.

iii. If value of m₀ = 1, this indicates that there is no change in TFP.

2.1.3 Example

Concepts of Malmquist Index Computation are illustrated here with the help of a small example.

Agricultural dataset for 6 districts of Himachal Pradesh has been used as an example. Figure 2.2

shows Input and output data in the form of tabular structure. Two inputs (Fertilizer Consumption

and Rainfall) for each of the six districts (Bilashpur, Chamba, Hamirpur, Kangra,Kinnaur and

Kullu) for the two years 1991 and 1992 have been considered. In the output, total cereals

production, for each of the six districts have been considered.

- 10 -

Figure 2.2 Sample Dataset

The computation of Malmquist Index for the district Bilashpur from time-period 1991 to 1992

first requires the solving of following four linear programming problems:-

1991 -1

0 1991 1991 Φ, λ

1 2 3 4 5 6

1 2 3 4 5 6

1.) [d (y , x)] = max Φ

subject to :

 (-) × 91.524 + (91.524 × λ +101.282× λ +129.685× λ + 306.79× λ + 5.732× λ + 73.18× λ) 0

2 .158 - (2 .158× λ + 0.573× λ + 2.901× λ + 7.134× λ + 0.102 × λ +1.927× λ) 0

867.20 - (867

 ≥

≥

1 2 3 4 5 6

1, 2, 3, 4, 5, 6

.20 × λ +1268.70× λ +1163.90× λ +1945.50× λ + 771.80 × λ + 594.60× λ) 0

λ λ λ λ λ λ 0;

≥

≥

- 11 -

After solving the above four linear programming problems, the values of four distance functions

are calculated which are given below:-

The calculation of these linear programming problems manually or by using solver is very

tedious and it becomes more cumbersome for larger dataset involving more number of locations

and more inputs and outputs. Now, the Malmquist Index for the district Bilashpur can be

computed by using the following formula which involves the use of four distance function values

calculated above:-

1992 1

0 1992 1992
d y ,x)] ma x

sub je c t t o:

, , 3, 4, 5, 6 0;

1992 1991

0 1992 1992 0 1992 1992

1991 1992

0 1991 1991 0 1991 1991

d (y , x) d (y , x)

 d (y , x) d (y , x)

0 1991 1991 1992 1992
m (y , x , y , x)

1991

0 1991 1991

1992

0 1992 1992

1991

0 1992 1992

1992

0 1991 1991

d (x , y) 0.817

d (x , y) 0.681

d (x , y) 4.870

d (x , y) 0.358

- 12 -

Thus from the value of Malmquist Index (3.365) for the district Bilashpur, it has been

observed that TFP for the district Bilashpur has shown a positive growth from 1991 to 1992.

Similar steps can be used for determination of TFP status using Malmquist Index for other

districts too.

2.2 Review of Work Done

Many works related to TFP growth measurement have been done in the area of agriculture.

Different types of TFP indices have been used in different works. Some of those works which

have been reviewed are as follows:-

 Palanisami et al., (2012) from Centre for Agricultural and Rural Development Studies,

TNAU conducted a survey on the topic “Performance of Agriculture in river basins of Tamil

Nadu in the last three decades - total factor productivity approach”. In this study, two outputs

Crops and Livestock have been taken and Inputs considered are land, labour, chemical,

fertilizer and irrigation. Using these input and output data sets, TFP indices in each of the

small, medium and large basins during the period 1975-76 to 2005-06 have been computed.

 Trivedi et al., (2006) worked on the topic “Agricultural productivity in Maharashtra, India:

A District-wise Analysis”. In this, Malmquist Index has been used for computation of TFP

growth for all the districts of Maharashtra. The data on output series has been derived by

aggregating detailed production quantities data of 20 crops including cereals, pulses,

oilseeds, potato, sugarcane, cotton and tobacco. The input data series include six variables

viz. land, labour, tractors, fertilizer, irrigation and rainfall. Using these output and input data

series, Technical Efficiency Change, Technical Change and TFP change for the period 1969-

1998 for all the districts have been computed. The software DEAP has been used for this

computation purpose.

 0.817

0.681 4.870

0.358

3.365

- 13 -

2.3 Review of Software

 Samimul Alam A.K.M. (2011) developed software named WBSTFP as a part of his M.Sc.

thesis of PG School, IARI, New Delhi. WBSTFP is user friendly software for TFP

computation using Tornquist Index method. The software provides TFP index, output index,

input index, growth and growth curve of each index. It is online software that can be

accessed using the default browser of the user system. This software is useful for

statisticians, agricultural economists and other agricultural researchers working in the area of

agricultural productivity.

 DEAP (Data Envelopment Analysis Program)

For Computation of Malmquist Index, researchers use spreadsheets and repeated calculations

for solving of involved linear programming problems. It is a tedious method and chances of

occurrence of errors are very high. Realizing this problem, an attempt was made by Tim

Coelli (Coelli et al., 2008) and he developed a computer program DEAP (Data Envelopment

Analysis Program). DEAP is a DOS based computer program which can be used to construct

DEA frontiers for the calculation of technical and cost efficiencies and also for the

calculation of Malmquist TFP indices. The program has three principle DEA options:

 Standard Constant Returns to Scale and Variable Returns to Scale DEA models that

involve the calculation of technical and scale efficiencies.

 The extension of the above models to account for cost and allocative efficiencies.

 The application of Malmquist DEA methods to panel data to calculate indices of total

factor productivity (TFP) change, technological change, technical efficiency change

and scale efficiency change.

The steps to compute Malmquist Index and underlying Technical and cost efficiencies using

DEAP version 2.0 program are as follows:-

1) First, the software needs to be downloaded from the website

www.uq.edu.au/economics/cepa/deap.htm. Then the files have to be unzipped and placed in a

directory.

2) The executable files DEAP.EXE and the start-up file DEAP.000 is supplied on the disk. The

start-up file is a file which stores key parameter values.

- 14 -

3) There is specific file format for data analysis, Data file should be ASCII text file. The data

must be listed by observation (i.e., one row for each firm). There must be a column for each

output and each input, with all outputs listed first (from left to right across the file). Data file

should only contain numbers separated by spaces or tabs. It should not contain any column

headings.

4) Instruction file is a text file which should be prepared using a text editor or a word processor.

The comments given on the right- hand side of the file explain the meaning of each

instruction. Different types of instructions are:

 Instruction about data file name with extension (.dta)

 Instruction about output file name with extension (.out)

 Instruction about number of firms, number of time periods, number of outputs

and number of inputs present in data file

 A “0” is provided for input orientation and “1” for output orientation

 On the next line, a “0” is specified to indicate “CRS” and “1” for VRS.

 On the last line, to specify “0 for DEA(Multi-stage)”, “1 for COST-DEA”, “2

for Malmquist-DEA” , “3 for DEA(1-Stage)” and “4 for DEA(2-Stage).

5) Finally, one has to type “DEAP” at the DOS prompt, and then type in the name of the

instruction file. The program will take some time to run the required LP problems and send

the output to the output file having extension (.out).

The limitations of the software DEAP are as follows:-

 It is DOS based software.

 It needs to be downloaded.

 User needs to prepare files in standard formats.

 User needs to remember certain commands for making instruction file.

 It lacks in User-friendliness.

2.4 Summary

TFP growth measurement has always remained an important part in study of agricultural

economics and Malmquist Index is the best way to measure TFP change. The software DEAP is

very useful in this regard but being a DOS-based software it lacks in user-friendliness. In this

dissertation work an attempt has been made to develop web based software MalmSoft for

- 15 -

computation of Malmquist Index. The technologies used for development of MalmSoft are

explained in the next chapter.

- 16 -

CHAPTER-III

MATERIALS AND METHODS

Present chapter discusses the system architecture and technologies used for design and

development of this software. „Microsoft Solver Foundation‟ library has been used for solving

the complex linear programming problems involved in the process of Malmquist Index

Computation. Methods used in the computation of linear programming problems from this

library have been discussed in this chapter.

3.1 Software Architecture

MalmSoft, online software for computation of Malmquist Index, has been developed using

standard three layered web architecture. Figure 3.1 presents the layered architecture (Grove,

2010).

 Layer I: User Interface layer (UIL)

 Layer II: Application layer (APL)

 Layer III: Database layer (DBL)

 Figure 3.1 Three Tier Architecture of t

Figure 3.1 Three-Tier Architecture of Software

- 17 -

3.1.1 User Interface Layer

The User Interface Layer is implemented using HTML (Hyper Text Markup Language), CSS

(Cascading Style Sheets) and JavaScript. The User Interface Layer consists of forms for

accepting information from the user and validating those forms using JavaScript.

3.1.1.1 Hyper Text Mark-up Language

Hypertext Mark-up Language (HTML) is the language used to create pages on the World Wide

Web, known as web pages. Web browsers parse HTML documents and display the contents of

the documents based on a set of rules. HTML consists of many tags that describe these rules. The

browsers perform actions based on the rules described by the tags. HTML is used to create static

web pages. Web browsers, such as Internet Explorer and Netscape, read HTML code and then

display text, images, etc. based on the content of the HTML code (Holzner, 2009).

3.1.1.2 JavaScript

Originally called LiveScript, JavaScript owes the Java part of its name to the popularity of Java,

the cross-platform, object-oriented programming language created by Sun Microsystems.

JavaScript was designed for specific purpose of extending the capabilities of web browser and

providing web developers with an easy means of adding interactivity to their websites. There are

actually three flavors of JavaScript: Core JavaScript, Client-Side JavaScript and Server-Side

JavaScript. Core JavaScript is the basic JavaScript language. It includes the operators, control

structures, built-in functions and objects that make JavaScript a programming language. Client-

Side JavaScript (CSJS) extends the JavaScript core to provide access to browser and web

document objects via the Document Object Model (DOM) supported by a particular browser.

Another extension to Core JavaScript is Server-Side JavaScript (SSJS). SSJS is embedded

directly within HTML documents and can serve any type of Web browser and runs on any SSJS-

enabled Web server (Powell et al., 2004, Gillam et al., 1999).

3.1.1.3 Cascading Style Sheets (CSS)

CSS was first developed in 1997, as a way for web developers to define the look and feel of their

web pages. It was intended to allow developers to separate content from design so that HTML

could perform more of the function that it was originally based on - the markup of content,

without worry about the design and layout. The concrete benefits of CSS include:

- 18 -

 Control layout of many forms from one single style sheet.

 More precise control of layout.

 Apply different layout to different media-types (screen, print, etc.).

3.1.2 Application Layer

Server side application layer is implemented in .NET framework. The .NET Framework provides

the necessary compile-time and run-time foundation to build and run .NET based applications.

ASP.NET is powerful and flexible technology of .NET framework to create dynamic web pages

and the same is used for development of the software MalmSoft. C# language has been used as

object oriented language for server-side code scripting in ASP.NET pages.

3.1.2.1 .NET Framework

The .NET framework is whole suite of technologies designed by Microsoft with the aim of

revolutionizing the way in which all program development takes place. The .NET framework

consists of different components that help to build and run .NET based applications (Figure 3.2):

Platform Substrate: The .NET Framework must run on an operating system. Currently, the

.NET Framework is built to run on the Microsoft Win32® operating systems, such as Windows

2000, Windows XP, and Windows 98.

Application Services: When running on Windows 2000, application services, such as

Component Services, Message Queuing, Internet Information Services (IIS), and Windows

Management Instrumentation (WMI), are available to the developer. The .NET Framework

exposes application services through classes in the .NET Framework class library.

- 19 -

Figure 3.2 Structure of .NET Framework

Common Language Runtime: The common language runtime simplifies application

development, provides a robust and secure execution environment, supports multiple languages,

and simplifies application deployment and management.

Microsoft ADO.NET: ADO.NET is the next generation of Microsoft ActiveX® Data Objects

(ADO) technology. ADO.NET provides improved support for the disconnected programming

model. ADO.NET also provides extensive XML support.

ASP.NET: ASP.NET is a programming framework that is built on the common language

runtime. ASP.NET can be used on a server to build powerful Web applications. ASP.NET Web

Forms provide an easy and powerful way to build dynamic Web User Interfaces (UIs).

XML Web Services: XML Web services are programmable Web components that can be shared

among applications on the Internet or the intranet. The .NET Framework provides tools and

classes for building, testing, and distributing XML Web services.

- 20 -

User Interfaces: The .NET Framework supports three types of UIs. Web Forms, which work

through ASP.NET and the Hypertext Transfer Protocol (HTTP). Windows Forms, which run on

Win32 client computers and Command Console.

.NET Framework Class Library: It exposes features of the runtime and simplifies the

development of .NET-based applications. It implements the .NET Framework. All applications

(Web, Windows, and XML Web services) and all.NET-based languages access the same .NET

Framework class libraries, which are held in namespaces.

Languages: Any language that conforms to the Common Language Specification (CLS) can run

with the common language runtime. In the .NET Framework, Microsoft provides support for

Visual Basic® .NET, Visual C++® .NET, C#, and JScript® .NET (MacDonald, 2010).

3.1.2.2 ASP.NET

ASP.NET runs on the web server and provides a way to develop content-rich, dynamic,

personalized web sites. Developing ASP.NET web applications in the .NET framework is similar

to developing Windows applications. The fundamental component of ASP.NET is the Web

Form. A Web Form is the Web page that users view in a browser. An ASP.NET web application

comprises one or more web forms. A web form is a dynamic page that can access server

resources. A traditional web page can run script on the client to perform basic tasks. An

ASP.NET web form, conversely, can also run server-side code to access a database, to generate

additional web forms, or to take advantage of built-in security on the server. In addition, because

an ASP.NET web form does not rely on client-side scripting, it is not dependent on the client‟s

browser type or operating system. This independence allows one to develop a simple web form

that can be viewed on practically any device that has internet access and a web browser. Because

ASP.NET is part of the .NET Framework, one can develop ASP.NET web applications in any

.NET supported languages (Evjen et al., 2011).

ASP.NET is server-side script that runs on the web server. When a web browser requests

a web page created with client-side technologies, the web server simply grabs the files that the

browser (the user) requests and sends them down the line. The user is entirely responsible for

reading the code in the files and interpreting it to display the page on the screen. Server-side

- 21 -

technologies, like ASP.NET, are different. Instead of being interpreted by the user, server-side

code is interpreted by the web server. In the case of ASP.NET, the code in the page is read by the

server and used dynamically to generate standard HTML/JavaScript that is sent to the browser.

As all processing of ASP.NET code occurs on the server, it‟s called a server-side technology.

The server (server-side technology) does the task for processing the dynamic portions of the page

(Figure 3.3).

Figure 3.3 Communications between Server and Client

There are some key mechanisms of an ASP.NET page, specifically:

 Page structure

 View state

 Namespaces

 Directives

ASP.NET page structure: ASP.NET pages are simply text files with the .aspx file name

extension that can be placed on an IIS server equipped with ASP.NET. When a browser requests

an ASP.NET page, the ASP.NET runtime (as a component of the .NET framework‟s Common

Language Runtime, or CLR) parses and compiles the target file into a .NET framework class.

The application logic now contained within the new class is used in conjunction with the

presentational HTML elements of the ASP.NET page to display dynamic content to the user

(Walther, 2006). An ASP.NET page consists of the following elements:

 Directives

 Code declaration blocks

 Code render blocks

- 22 -

 ASP.NET server controls

 Server-side comments

 Server-side include directives

 Literal text and HTML tags

Presentational elements within the page are contained within the <body> tag, while application

logic or code can be placed inside <script> tags. Figure 3.4 illustrates the various parts of that

page.

Figure 3.4 ASP.NET Page

Working with directives: ASP.NET pages closely resemble traditional HTML pages, with a

few additions. In essence, just using an extension .aspx on an HTML file will make the .NET

framework process the page (MacDonald, 2010). Directives control describes how a page is

created, specify settings when navigating between pages, aid in finding errors, and allow import

of advanced functionality to use within code. Three of the most commonly used directives are:

Page: It defines page-specific attributes for the ASP.NET page, such as the language used.

Code Declaration

Block

Directive

ASP.NET Control

Server-side

Comment

Code Render Block

- 23 -

Register: This directive is used to link a user control to the ASP.NET page. The Register

directive allows you to register a user control for use on your page. The directive looks

something like this:

<%@RegisterTagPrefix="uc" TagName="footer"Src="footer.ascx"

%>

Import: The Import directive imports extra functionality for use within application logic. It

makes functionality defined elsewhere available in a page through the use of namespaces. The

following example imports the drawing class, to draw a chart in an application:

<%@ Import Namespace="System.Drawing" %>

ASP.NET Master Pages: Master pages help to create a consistent look and behavior for all the

pages (or group of pages) in a web application. A master page provides a template for other

pages, with shared layout and functionality. The master page defines placeholders for the

content, which can be overridden by content pages. The output result is a combination of the

master page and the content page. The content pages contain the content that has to be displayed

in each page according to the requirement. When users request the content page, ASP.NET

merges the pages to produce output that combines the layout of the master page with the content

of the content page.

<%@ Master Language="C#"%>

<html>

<body>

<asp:ContentPlaceHolder id="CPH1" runat="server">

</asp:ContentPlaceHolder>

</body>

</html>

The master page above is a normal HTML page designed as a template for other pages. The @

Master directive defines it as a master page. The master page contains a placeholder

tag <asp:ContentPlaceHolder> for individual content.

<%@ Page Language="C#" MasterPageFile="~/site.master"%>

<asp:ContentPlaceHolder id="CPH1" runat="server">

<h2>My heading </h2>

- 24 -

<p> Paragraph1</p>

</asp:ContentPlaceHolder>

The content page samplepage.aspx above shows the pattern of an individual content page in

ASP.NET master page. The @ Page directive defines it as a standard content page. It contains a

reference to the master page file used MasterPageFile="~/site.master". The content page

contains a content tag <asp:Content> with a reference to the master page

ContentPlaceHolderId="CPH1". The content text must be inside the <asp:Content> tag. No

content is allowed outside the tag. When the user requests this page, ASP.NET merges the

content page with the master page (MacDonald, 2010).

3.1.2.3 C#

C#, pronounced c sharp, is a type-safe, object-oriented language used to give instructions

that tell the computer what to do, how to do it, and when to do it. C# is one of the languages used

in the Microsoft .NET Framework for writing ASP.NET applications. Visual studio supports C#

with a full-featured code editor, compiler, project templates, designers, code wizards, a powerful

and easy-to-use debugger, and other tools. The C# language is used to create different

applications including console, windows, forms, class library, web applications, etc. C# is case-

sensitive (Stellman et al., 2012).

3.1.3 Database Layer (DBL)

Database Layer is implemented using Microsoft Access. It is used for designing the

following:

 Tables

 Relationships

 Referential Integrity Constraints

 Queries

- 25 -

The relational approach is used to design the database. The fundamentals of normalization theory

are used to normalize the different tables of the database (Date et al., 2006). All tables have

proper interaction among themselves via primary key- foreign key relationship.

ADO.NET is the data access technology built into the .NET framework. Microsoft has created

separate namespaces that are optimized for working with different data providers (Esposito,

2005). The following data provider namespaces are included with ADO.NET:

System.Data.SqlClient: Contains classes for connecting to Microsoft SQL version 7.0 or higher.

System.Data.OleDb: Contains classes for connecting to a data source that has an OleDb

Provider.

System.Data.Odbc: Contains classes for connecting to a data source that has an ODBC driver.

System.Data.OracleClient: Contains classes for connecting to an Oracle database server.

To connect to a Microsoft Access database, classes from System.Data.OleDb namespace are to

be used. The System.Data.OleDb namespace includes the following classes:

OleDbConnection: Represents an open database connection to a database.

OleDbCommand: Represents a SQL statement or stored procedure.

OleDbDataReader: Represents the results from a database query.

Performing Common Database Tasks

To import the System.Data.OleDb namespace the following page directive is used:

<%@ Import Namespace= “ System.Data.OleDb”%>

Opening a Database Connection

To access a database, at first it is needed to create and open a database connection. Example

scripts that create and open database connection for a Microsoft Access database is given below.

<%@Page Language= “C#”%>

- 26 -

<%@Import Namespace= “ System.Data.OleDb”%>

<script runat= server>

protected void Page_Load(object sender, EventArgs e)

{

OleDbConnection con= new OleDbConnection();

con.ConnectionString=“Provider=Microsoft.Jet.OLEDB.4.0;DataSource=C:/Users/suvro/Docum

ents/Visual Studio2010/App_Data/user.mdb;Persist Security Info=False”;

con.Open();

DataTable dt= new DataTable();

OleDbDataAdapter da= new OleDbDataAdapter(“Select ID,Check_User from

SignUp_store”,con);

da.Fill(dt);

con.Close();

}

</script>

It first imports the necessary namespace, System.Data.OleDb, for working with Microsoft access

database. An instance of the OleDbConnection class named con is created. The con class is

initialized by passing a connection string as a parameter to the constructor for the

OleDbConnection class. Finally, the connection is actually opened by calling the Open() method

- 27 -

of the OleDbConnection class. The Connection string contains the name of the provider

(Microsoft.Jet.OleDb.4.0), source (location of database) etc. to access the database.

3.2 Software Development Environment

MalmSoft software has been developed using Microsoft Visual Studio 2010. Microsoft Visual

Studio 2010 is an integrated development environment (IDE) and supports in easy development

to deployment.

3.2.1 Visual Studio 2010

Visual studio is an integrated development environment (IDE) from Microsoft. It

provides a complete set of development tools for building ASP.NET web applications, XML

web services, desktop applications, and mobile applications. Visual Basic, Visual C#, and visual

C++ all use the same IDE, which enables tool sharing and eases the creation of mixed-language

solutions. In addition, these languages use the functionality of the .NET framework, which

provides access to key technologies that simplify the development of ASP web applications and

XML web services. It provides a set of project templates, features and an IDE. Visual studio

includes a code editor supporting IntelliSense as well as code refactoring. Other built-in tools

include a forms designer for building GUI applications, web designer, class designer, and

database schema designer. Visual Studio supports different programming languages by means of

language services, which allow the code editor and debugger to support (to varying degrees)

nearly any programming language, provided a language-specific service exists. Once the visual

studio 2010 has been installed and all of the initialization has finished, the Visual Studio 2010

start page is pictured as Figure 3.5. The following are the most important tools and windows in

Visual Studio.

The Code Editor: It is a word processor for writing source code.

The compiler: For converting source code into an executable program.

The Visual Studio debugger: For testing program. It can be run to resolve logic and semantic

errors.

Toolbox and Designer: For rapid development of user interfaces by using the mouse.

- 28 -

Solution Explorer: For viewing and managing project files and settings. It provides an

organized view of projects and their files as well as ready access to the commands that pertain to

them.

Project Designer: For configuring compiler options, deployment paths, resources, and more.

Class View: For navigating through source code according to types, not files.

Properties Window: For configuring properties and events on controls in your user interface. It

displays sizes, dimensions and other "properties" for objects.

Object Browser: For viewing the methods and classes available in dynamic link libraries

including .NET Framework assemblies and COM objects.

Document Explorer: For browsing and searching product documentation on a local computer

and on the Internet.

Solution Explorer Class View: It is an additional tab to the solution explorer window. It shows

the hierarchy of the namespaces and classes in the source code (Mayo, 2010).

Figure 3.5 Visual Studio 2010 Page

- 29 -

A mathematical library Microsoft Solver Foundation has been used for solving the complex

linear programming problems. Thus, a few details regarding this library and the various classes

of the library which have been used are provided in the next section.

3.3 Microsoft Solver Foundation Library

Microsoft Solver Foundation 3.1 is a set of development tools for mathematical simulation,

optimization, and modeling that relies on a managed execution environment and the common

language runtime (CLR). It can be used with any CLR language including Visual C#, Visual

Basic, Visual C++, Visual F#, and IronPython (www.msdn.microsoft.com). Microsoft Solver

Foundation is a versatile API that can be:

 Run remotely as a service within IIS and ASP.NET.

 Run through Microsoft Office as an Excel add-in.

 Integrate in other .NET Framework applications.

 Embed as a Data Sub Language (DSL) within F#, C#, and other CLR languages.

 Embed as a CLR compliant module.

For using this library, it has to be first downloaded and installed in the system. It can be

downloaded from the product website: www.msdn.microsoft.com. After that it has to be added

as a reference in the project. It is supported in .NET Framework 4 and above. In the development

of MalmSoft software the namespace Microsoft.SolverFoundation.Services has been used for

solving the linear programming problems involved in the computation of distance function

values. A linear programming problem is an optimization problem which is used for finding the

optimum (maximum or minimum) value of a linear function of the decision variables(objective

function) under the condition that the values of these decision variables must satisfy certain

inequality or equality constraints. The namespace Microsoft.SolverFoundation.Services contains

classes and interfaces that can be implemented to integrate solvers into web application or

implement a solver. For developing MalmSoft, the following classes from the namespace

Microsoft.SolverFoundation.Services have been used:-

http://www.msdn.microsoft.com/

- 30 -

a. Decision – This class is used for creating a group of decision variables for which solver finds

values. Decision variables in a linear programming problem are a set of quantities that need

to be determined in order to solve the problem.

b. Constraint – This class encapsulates a term and its role as a constraint in the model.

c. Domain – This class defines a set of possible values for a decision or other parameter.

d. Term – The term class defines any decision, formula, goal or constraint in a model.

e. Model- The model class defines a model that has expression and constraints. A model is

basically a complete linear programming problem involving all the expressions for decision

variable, constraints as well as goal (maximize or minimize).

f. SimplexDirective – This class represents a directive for the simplex solver. In the simplex

solver, the linear programming problems are solved using the Simplex algorithm.

g. SolverContext – This class provides services to solvers.

h. Solution – The solution class defines the result of solving a model.

With the help of the above mentioned classes of Microsoft Solver Foundation library and by

applying some programming tricks like loops, the complex linear programming problems

involved in the computation of distance function values have been solved. More details on the

methods can be understood from the program codes (ModelCreation.cs, ModelCreation2.cs,

MalmCompute.cs) given in Appendix.

3.4 Conclusion

The software MalmSoft has been developed using the web technologies, mathematical library

Microsoft Solver Foundation and programming the equations used for Malmquist Index

computation. More details on functional features of the software MalmSoft and a broad

application of MalmSoft for computing the status of TFP in Bihar are explained in two proposed

research papers in the next chapter.

- 31 -

CHAPTER-IV

RESEARCH PAPERS

This chapter presents two research papers that are proposed from the dissertation work. Section

4.1 presents the research paper entitled Online Software for Computation of Malmquist Index

(MalmSoft) in which working architecture of the software along with functionality has been

explained. Section 4.2 presents another research paper entitled Analysis of TFP status in Bihar

using MalmSoft in which TFP change has been computed with the help of software for Bihar State.

4.1 Online Software for Computation of Malmquist Index (MalmSoft)

Abstract

Productivity, mainly a measure of output per unit of input, is a closely watched economic

performance indicator because of its contribution to a healthy and thriving economy. Agriculture,

in particular, has been a very successful sector of the Indian Economy in terms of productivity

growth. Thus, productivity growth in agriculture is both necessary and sufficient condition for

the economic development. Total Factor Productivity (TFP) is that part of growth in output,

which cannot be explained by growth in factor inputs like land, labour and capital (Kumar et al.,

2004). Malmquist Index is an important TFP index which measures the TFP change between two

data points (e.g., those of a particular country in two adjacent time periods) by calculating the

ratio of the distances of each data point relative to a common technology (Fare et al., 1994). An

online software has been developed to compute TFP Index based on Malmquist Index. The

purpose of this paper is to describe features and functional details of online software for

computation of Malmquist Index (MalmSoft). MalmSoft is freely accessible web based software

for computation of Malmquist Index. This software is completely menu driven and presents user-

friendly GUI which is developed to minimize efforts in using the software. This software is

useful for statisticians, agricultural economists and other agricultural researchers working in the

area of agricultural productivity.

Key words: TFP, Malmquist Index, Web based software, Technical Efficiency, MalmSoft.

4.1.1 Introduction

- 32 -

TFP is an important measure to evaluate the performance of any production system and

sustainability of a growth process. Total Factor Productivity (TFP) is that part of growth in

output, which cannot be explained by growth in factor inputs like land, labour and capital

(Kumar et al., 2004).

Index of Total Factor Productivity (TFP) measures the growth of net output per unit of

total factor input. In the context of Indian agriculture, technical progress would measure the

impact of shifts in production technology on account of irrigation, high yielding varieties of

seeds, modern agricultural machinery and equipments, fertilizers, pesticide etc. It would also

capture the effects of improved quality of labour, better farm management practices, greater

utilization of resources like land and equipment which leads to increased crop intensity,

changes in cropping pattern in favor of high value crops etc. (Kumar et al., 2004).

Malmquist Index is used to measure the total factor productivity change of a production

unit between two time periods by using the method of Data Envelopment Analysis (DEA)

(Caves et al., 1982). Data Envelopment Analysis (DEA), a non-parametric approach to frontier

estimation, involves the use of linear programming methods to construct a piece-wise surface

(or frontier) over the data points such that the constructed frontier envelops all given data points,

that is, all observed data points lie on or below the production frontier. It constructs a

benchmark technology among the observed input-output bundles of the firms in the sample.

Efficiency measures are then calculated relative to this surface (Charnes et al., 1978). Thus,

computation of Malmquist Index requires solution of complex linear programming problems for

each production unit.

Most of the agricultural researchers use spreadsheets and repeated calculations for

computation of Malmquist Index. Spreadsheets may be adequate if there is only one input and

output and computation is required for less number of locations. However, it becomes

increasingly difficult when more inputs and outputs and more locations are considered.

Realizing this problem, an attempt was made by Tim Coelli (Coelli, 2008) to automate the

process of Total Factor Productivity computation. He developed a computer program DEAP

(Data Envelopment Analysis Program) for the purpose of computing Malmquist index

(http://www.uq.edu.au/economics/cepa/deap.htm). However, the software DEAP has many

limitations like i) It is DOS based software, ii)It needs to be downloaded, iii) User needs to

- 33 -

prepare files in standard formats, iv)User needs to remember certain commands for

making instruction file, v)It lacks in user friendliness. Keeping these points in mind online

software for computation of Malmquist Index is developed by the authors. This software is

referred as “Online Software for Computation of Malmquist Index (MalmSoft)”.

MalmSoft is user friendly software for Malmquist Index computation. Users are

expected to be personnel working in the area of economics and dealing with total factor

productivity who are not having much exposure for installation of the software and writing

scripts and codes in a program. Malmsoft is online software that can be accessed using the

default browser of the user system. Therefore MalmSoft users are released from the burden of

downloading, installation and dealing with the issues like incompatibility of hardware and

writing scripts or macros. This paper makes an attempt to explain the functionality and features

of MalmSoft and develop interest and insight for computing TFP using MalmSoft.

The rest of the paper is organised as follows. Section 4.1.2 presents the Malmquist Index

approach for computation of TFP and its methodological steps. Users of the software do not

require dealing with these aspects. Section 4.1.3 presents the design methodology for MalmSoft.

Section 4.1.4 presents software development methodology. Section 4.1.5 presents the module

developed for Malmquist Index Computation Interface and explains various features (e.g., Input

data handling, Malmquist Index computation, output data handling and online help) provided by

MalmSoft. Testing and Verification of the software is presented in Section 4.1.6 followed by the

conclusion in Section 4.1.7.

4.1.2 Malmquist Index

Malmquist Index is used to measure the total factor productivity change of a production

unit between two time periods by using the method of Data Envelopment Analysis (DEA)

(Caves et al., 1982). The Malmquist index is defined using Distance functions. Distance

functions allow one to describe a multi-input, multi-output production technology without the

need to specify a behavioural objective (such as cost minimization or profit maximization). The

distance function values measure the distance of an agricultural firm from its production frontier-

how close a particular level of output is to the maximum attainable level of output from the same

level of inputs if the production is technically efficient. A production firm is said to be

- 34 -

technically efficient if the firm is able to produce the maximal output from the given bundle of

inputs and given technology. The output-oriented Malmquist TFP growth index is defined using

the formula given below:-

0 0
0

0 0

(,) (,)
(, , ,)

(,) (,)

s t
t t t t

s s t t
s t

s s s s

d y x d y x
m y x y x

d y x d y x

 In the above formula,
0 (,)s

t td y x

represents distance from period „t‟ observation to period „s‟ technology. In order to calculate

Malmquist Index, i.e.; to measure TFP change between two time periods, we need to calculate

four distance functions for each production unit (Fare et al., 1994). This requires solution of

following four linear programming problems for each production unit:-

1

01. , max

. . 0

t
t t

it t

it t

d y x

s t y Y

x X

1

02. , max

. . 0

0

0

s
s s

is s

is s

d y x

s t y Y

x X

1

03. , max

. . 0

0

0

t
s s

is t

is t

d y x

s t y Y

x X

- 35 -

1

04. , max

. . 0

0

0

s
t t

it s

it s

d y x

s t y Y

x X

In the above linear programming problems,

iy is an M1 vector of output quantities for thi production unit.

ix is a K1 vector of input quantities for thi production unit.

Y is a NM vector of output quantities for all N production units.

X is an NK vector of input quantities for all N production units.

 is an N1 vector of weights. is a scalar.

Each of the above linear programming problems when solved produce and a vector. The

 vector gives information on the technical efficiency score for the thi unit and the vector

provides information on the peers of the thi unit. After calculating m₀ value using the above

Malmquist Index formula, we can check for TFP growth using the following conditions:-

i. If value of m₀ >1, this indicates a positive TFP growth from period s to period t.

ii. If value of m₀ < 1, this indicates decline in TFP from period s to period t.

iii. If value of m₀ = 1, this indicates that there is no change in TFP.

4.1.3 MalmSoft Design

MalmSoft is web based software; which is completely menu driven and provides user-friendly

interface well organized for users. Software has been developed using modular approach.

Different modules have been made for better managing the code. Different modules in MalmSoft

application are presented in Table 4.1.1.

- 36 -

Table 4.1.1 Modules in MalmSoft

System flow presents the structure using which user interacts with the system. Malmsoft

structure has been presented in the hierarchical structure chart (Figure 4.1.1).

Module Name Description

Login Provide facility of login to users.

MalmCompute

The core module of MalmSoft for Malmquist Index

Computation. This module provides facility to compute

distance functions and Malmquist Index.

Upload data file
Module for uploading input as well as output agricultural

data set.

Sample Data
Download sample data to understand format of input and

productivity data.

Contact Us Contact details of developer team.

Help Provide online help about software.

New User

Registration
Provide facility of registering to new user.

Logout Provide logout facility to user.

- 37 -

Figure 4.1.1 Hierarchical Structure of Software Design

4.1.4 MalmSoft Development Methodology

MalmSoft has been developed in Microsoft Visual Studio 2010 integrated development

environment (IDE). MalmSoft has been designed and developed as per standard three layered

web architecture.

 Layer 1: User Interface layer

This Layer is implemented using combination of HTML (Hyper Text Markup Language),

JavaScript and CSS (Cascading Style Sheets).

 Layer 2: Application layer

ASP.NET 4.0 and .NET framework is used for building dynamic and interactive web

pages in application layer. C# has been used for writing the business logic of application.

 Layer 3: Database layer

Database Layer is implemented using MS Access to store only user information.

Database connectivity has been done with ADO.NET which provides improved support

for the disconnected programming model.

Authentication of
user

Allready User

Home

Data Upload(Excel
File)

Output
Sheet

Input
Sheet

Malmquist Index
Computation

Distance
Function Values Malmquist Index

About TFP
and MI

Sample
Data

Contac
t us

Help Logout

New User

Registration

- 38 -

4.1.5 Malmquist Index Computation interface

MalmSoft being a web based software is freely accessible to user through internet. In

order to maintain a log of different users, MalmSoft requires user login or registration. User can

only access the system after entering authentic username and password. Home page (Figure

4.1.2) of the software presents a login window to identify the user. New user can register with

the help of new user registration window. Information submitted by user is stored in the

database.

Figure 4.1.2: Home page of MalmSoft

Authentication of username and password in login form will redirect the control to the

main page for computation of Malmquist Index (Figure 4.1.3). The menu bar on this page has

- 39 -

menu items like “Home”, “MalmCompute”, “About TFP”, ”Sample Data”, “Contact Us”,

“Help” and “Log Out”. After clicking on any of these menu items relevant page will be

displayed. After completion of a desired task, user can return to the home page for other

activities or log out.

Menu items “Contact Us” and “Log Out” are conventional self explanatory items. Menu

item “About TFP” explains theoretical concepts dealing with TFP computation using

Malmquist Index. “Sample Data” helps the client to understand the data format for Malmquist

Index computation. User can download sample data through this module. MalmCompute is the

core module of the software for computing Malmquist Index.

MalmCompute module provides facility for computing distance function values and

Malmquist Index. The facility for saving results for both the distance functions as well as

Malmquist Index has also been provided in the module.

Figure 4.1.3: Malmquist Index Computation page

- 40 -

4.1.5.1 Input Data Handling

Input data handling module has been designed and developed for reading data for

computation of TFP. User is required to upload their input data through an Excel file. This

software is compatible with Excel files of version 2003 or 2007. The Excel file should contain

two sheets namely agricultural output data sheet and agricultural input data sheet (Table 4.1.2

and Table 4.1.3). Each row contains data about location, year, corresponding input or output

quantity. Data sheets should not contain any missing or blank cell. In case data is not

logically possible for some cells zero (“0”) should be entered for unavailable data. Users are

needed to process their data before using MalmSoft.

Table 4.1.2: Sample Input data sheet Table 4.1.3: Sample output data sheet

Steps that should be followed for specifying input data in MalmSoft are:

 Click on the Malmquist Index computation (MalmCompute) tab directs the user to the

corresponding web page for uploading of data file. User needs to browse Excel data file

on his computer and select the output and input sheets. Other details for uploading Excel

files are self explanatory in Figure 4.1.4. User can also verify uploaded output and input

data by clicking on “View Uploaded Production Data” and “View Uploaded Input Data”

tab as shown in Figure 4.1.5.

- 41 -

Figure 4.1.4: Browse and Upload Excel file

Figure 4.1.5: Data verification

- 42 -

4.1.5.2 Malmquist Index Computation

Once the data for Malmquist Index computation is uploaded, calculations are done for

computation of distance function and Malmquist Index. For computation of distance functions

and Malmquist Index for each production unit, four complex linear programming problems

need to be solved. The codes developed for these computations are placed in Appendix

(ModelCreation.cs, ModelCreation2.cs). The computed results in the form of tabular structures

are then presented to the user. Tabular representation of result is shown using Gridview

controls. First the user gets the values of intermediate distance functions (Figure 4.1.6). These

distance function values are further used for the computation of Malmquist Index. After that the

Malmquist Index values for each of the locations considered are presented to the user (Figure

4.1.7).

Figure 4.1.6: Output screen for distance function

- 43 -

Figure 4.1.7: Output screen for Malmquist Index

4.1.5.3 Saving results

After computation of distance function and Malmquist Index values for all locations, it

will not be possible for user to memorize all the result. So there is a need to save these results

for future references. User can separately save the result for Distance function and

corresponding Malmquist Index to Excel sheet by clicking “Save Results” button provided in

both screens (Figure 4.1.6 and Figure 4.1.7).

4.1.5.4 Online Help

Comprehensive online information about the whole software is provided in the form of

help menu. Help is divided into two frames. Left frame shows index items and user can view

the corresponding details on the topic in the right frame (Figure 4.1.8).

- 44 -

Figure 4.1.8: Online Help

4.1.6 Testing and Verification

DEAP Version 2.1 is standard DOS-based software used by economists for computation

of Malmquist Index (http://www.uq.edu.au/economics/cepa/deap.htm). It has been developed by

Tim J Coelli (Coelli, 2008). MalmSoft has been tested using an agricultural dataset for six

districts of Himachal Pradesh. This dataset is shown in Table 4.1.2 and 4.1.3 as sample input and

output file. The Malmquist Index for these six districts of Himachal Pradesh has been computed

using both the software DEAP as well as MalmSoft and the results have been compared. The

results for distance function values obtained using MalmSoft and DEAP are shown respectively

in Figure 4.1.9 and 4.1.10.

- 45 -

Figure 4.1.9: Result using MalmSoft Figure 4.1.10: Result using DEAP

Similarly the result for Malmquist Index obtained using MalmSoft and DEAP are shown in

Figure 4.1.11 and 4.1.12 respectively.

Figure 4.1.11: Result for MI using MalmSoft Figure 4.1.12: Result for MI using MalmSoft

- 46 -

The results obtained for distance function as well as Malmquist Index is found to be

matching and hence the software MalmSoft is free from logical errors.

4.1.7 Conclusion

MalmSoft provides online facility to compute Malmquist Index. It is easily accessible

from the default browser of the user‟s system. It can save time in doing complex calculations

like computation of distance functions and Malmquist Index computation. MalmSoft also

provides the user the facility for saving results for future reference. The software is user

friendly and does not demand expertise of computer programming. Software results are

tested with standard DOS based software for computation of Malmquist index and encouraging

results are obtained.

4.2 Analysis of TFP growth in Bihar using MalmSoft

Abstract

Agriculture is the key to the overall development of the economy of Bihar. Recognizing this

critical role of agricultural sector in the overall growth as well as development performance of

Bihar, an attempt has been made to estimate the status of total factor productivity (TFP) using

Malmquist Index for different districts of Bihar using the developed software MalmSoft. A

comparison of trend in TFP Growth for all districts has also been done. Understanding trends in

district level TFP will further help the policy-makers in making appropriate agricultural plan for

these districts to boost the agricultural performance of the corresponding district.

Key words: MalmSoft, Bihar, Malmquist Index.

4.2.1 Introduction

At the turn of the century, the state of Bihar was bifurcated and a new state, rich in

natural and mineral resources was carved out from the southern part of erstwhile Bihar. With an

area of 94,163 sq km, Bihar is the 12th largest state in the country, comprising about 3 per cent

of the total geographical area of the country. However, the total population of the state as per the

- 47 -

Census of 2011 was 103.8 million – about 8.5 per cent of the total population of the country,

making it the third most populous state in the country. The population density of the state stands

at 1102 persons per sq km, which is the highest in the country, as against an All-India population

density of 382 per sq km. Characterized by low and stagnant economic growth, the state has high

levels of poverty, second only to Orissa and the lowest levels of per capita income among major

states in the country. It is also the least urbanized state in the country, after Himachal Pradesh

(Prasad, 1989; Prasad et al., 1988).

In this paper an attempt has been made to study the status of TFP using Malmquist Index

for different districts of Bihar over the year 2003-2007. The TFP index is computed as the ratio

of an index of aggregate output to an index of aggregate inputs. If TFP index of agriculture of a

place is greater than 1, then it indicates positive change in agriculture TFP of that place. On the

other hand, if TFP index is equal to or less than 1 it indicates stagnant or no growth in agriculture

TFP of that place (Ray, 2004).

Rest of the paper is organized as follows. Section 4.2.2 presents the details about

experimental data used for this study. Section 4.2.3 provides results and discussions followed by

conclusion in section 4.2.4.

4.2.2 Experimental Data

Computation of TFP for any sector at a place requires the data regarding total production

and total inputs consumed. In this study annual production and input consumption data

pertaining to 37 major districts of Bihar over the time period 2003-2007 have been considered.

The data has been collected from various authentic government websites including state level

Department of Economics and Statistics (www.dacnet.nic.in). Regarding the production data

four major outputs have been considered; quantity of Cereals, Pulses, Oilseeds and Sugarcane

produced by each district is used. Fertilizers, Rainfall and Land have been used as input data for

the study. In the study, the fertilizer input has been taken as total consumption of fertilizers of all

three kinds- nitrogenous, phosphate and potassium and unit considered is million tones. Rainfall

input has been taken as annual rainfall in mm, and Land as an input has been taken as Gross

Cropped Area. Formats of sample input and output files for the year 2003-2004 are presented in

Table 4.2.1 and 4.2.2.

- 48 -

Table 4.2.1 Sample Input data file for Bihar

- 49 -

 Table 4.2.2 Sample Output data file for Bihar

4.2.3 Results and Discussions

The values of Malmquist TFP index for each of the 37 districts of Bihar have been

computed using the software MalmSoft. Data was entered in excel file format for different years.

Screenshots for result of Malmquist Index for all the 37 districts for the time periods 2004

(Figure 4.2.1), 2005 (Figure 4.2.2), 2006 (Figure 4.2.3) and 2007 (Figure 4.2.4) are given below.

The Malmquist Index results found after computation using MalmSoft provides the status of TFP

for different districts of Bihar.

- 50 -

Figure 4.2.1 Malmquist Index for the period 2003-2004

- 51 -

 Figure 4.2.2 Malmquist Index for the period 2004-2005

- 52 -

 Figure 4.2.3 Malmquist Index for the period 2005-2006

- 53 -

 Figure 4.2.4 Malmquist Index for the period 2006-2007

These results are saved in Excel for further processing. Further computation has been done for

measuring the growth of Malmquist Index for all the 37 districts (Table 4.2.3). By observing the

growth trend of index for all the districts, a table showing the list of all the districts with positive

trend of growth rate and negative trend of growth rate have been presented (Table 4.2.4).

- 54 -

Table 4.2.3 Growth of Malmquist Index during the period 2003-04 to 2006-07

Table 4.2.4 Comparison of district-level TFP Growth

Districts with positive TFP growth rate

Muzaffarpur, Saharsa, Patna, Munger,

Bhagalpur, Gaya, Nawada, Bhojpur, Siwan,

Champaran(East), Champaran(West),

Sitamarhi, Araria, Buxar, Bhabhua.

Districts with negative TFP growth rate

Katihar, Darbhanga, Samastipur, Begusarai,

Madhubani, Banka, Kishanganj,

Khagaria,Madhepura, Purnea, Arwal,

Sheikhpura, Lakhisaria, Supaul, Saran,

Darbhanga, Gopalganj, Rohtas, Aurangabad,

Nalanda.

- 55 -

Table 4.2.4 presents the comparison of district-level TFP Growth trend during the year 2003-04

to 2006-07. Results have been verified with the standard DEAP software too. Results reveal that,

out of 37 districts, only fifteen districts have shown a positive trend in TFP growth during this

period. The districts showing negative trend of growth rate are poor performing districts and thus

need more attention for improving the overall condition of TFP in agriculture production for the

whole state. Based on the results, policy level interventions will be required from government for

these districts which can help the farmers in increasing the agricultural production.

4.2.4 Conclusion

The software MalmSoft has been successfully tested with the agricultural dataset of Bihar. Out

of the 37 districts considered, nearly 50 % are poor performing and so there is an alarming

situation. This highlights the need for a policy for these districts so as farmers can be benefitted

with the same. MalmSoft has been found to be giving satisfactory results for these districts of

Bihar. This software can be utilized for computation of agricultural TFP growth for other states

too.

- 56 -

CHAPTER-V

GENERAL DISCUSSIONS

In agricultural sector, productivity growth is both a necessary as well as sufficient condition for

its development. Malmquist Index is a kind of TFP Index that measures the growth of net output

per unit of total factor inputs. The task of computation of Malmquist Index requires high volume

of computation, considerable amount of time and hence manual computation of the process may

lead to results with less precision. Performance and efficiency of this process can be increased

with the help of computerized software. Web based software are popular as it provides user the

flexibility to use the software with ease and users are relieved from the burden of downloading

and installing the software. Web based software is accessed through internet on a web

browser. Web based software serve clients more conveniently as compared to windows based

software because of the following reasons:

 There is no need to install or download any software.

 Browser applications typically require little or no disk space on the client.

 Users don‟t have to worry about any technicality regarding installation and updates of the

software.

 Web based software is far more compatible to different platforms.

 Web based systems are accessed from the server. Hence every client happens to use same

version of the software at any point of time.

Malmsoft has been developed as a web based software with functionality for computation of

Malmquist Index. Online Software for Computation of Malmquist Index (MalmSoft) has five

modules namely MalmCompute, About TFP, Sample Data, Contact Us and Help accessible to

the user through home page after proper user authentication. The MalmCompute module is for

computation of Malmquist Index. Input dataset is in the form of an excel file with two sheets

(input and output parameters) which is then used for computation to give the required results for

distance function and Malmquist Index. The user can save both the results in excel format for

future references. Information regarding TFP and methodology for computation of TFP growth

using Malmquist Index has been provide in About TFP module. Through the Sample Data

module user can download the example input file which explains the way in which to prepare an

- 57 -

excel file for using MalmCompute module. The Contact Us module will help the users to get

necessary help for use of this software and any clarifications needed from the resource persons.

The software has also been provided with an extensive help document on economic concepts

involved, use of the software and preparation of input file.

For development of Malmsoft, web based three tier architecture is used. ASP.NET has been used

for writing the code for software. C# which is an object oriented programming language has been

used as programming language for coding the program in ASP.NET. Along with C# class

library, a mathematical library Microsoft Solver Foundation has also been used which provides

method for computation of complex linear programming problems involved in the process of

Malmquist Index calculation.

Visual Studio 2010 has been used as an editor for writing the codes. For verification of software,

results of one dataset obtained using Malmsoft are compared to that obtained using DEAP

software developed by Tim J. Coelli (Coelli, 2008). It is observed that both the results are

matching. Hence it is concluded that the software is free from logical errors and results are

reliable.

MalmSoft is complete software for computation of Malmquist Index and can be used for

calculation of TFP growth from one time period to another time period. However like other

software, it also has enough room for upgradation or integration with other existing econometric

software. Some more modules can be developed in future using other available index for TFP

computation which are available in literature. New advancements for computation of TFP can

also be coded into the software as and when required.

- 58 -

CHAPTER-VI

SUMMARY

Total Factor Productivity (TFP) is a productivity measure to evaluate the performance of

agricultural production system and sustainability of growth process of an agricultural firm. Ratio

of aggregated output index to aggregated input index is called Total Factor Productivity Index

(TFPI) (Kumar et al., 2004). There are several index available for computation of TFP growth.

However, in situations when data regarding prices are not available, Malmquist Index method for

computation of TFP growth can be used (Ray, 2004).

Malmquist Productivity index introduced by Caves et al.,1982 is a measure that constructs a

production frontier representing the technology and uses the corresponding distance functions

evaluated at different input-output combinations for productivity comparisons (Ray, 2004).

Malmquist Index method has found potential applications in many sectors of economics

including agriculture economics too. There is no online analytical tool which provides

methodology for computation of Malmquist Index. After requirement analysis for Malmquist

Index computation software, it was observed that there is a need to develop easily accessible,

user friendly and interactive software. Hence Online Software for computation of Malmquist

Index (MalmSoft) is developed.

Software process model for Malmquist Index computation refers to the various steps required to

be executed for development of online software for Malmquist Index computation. Online

Software for computation of Malmquist Index (MalmSoft) is implemented as a layered structure

with each layer corresponding to a different functionality. MalmSoft is designed to be working

on the following three layers:

 User Interface Layer (UIL):- This is developed using Hyper Text Markup Language

(HTML), Cascading Style Sheet (CSS) and JavaScript.

 Application Layer: - This is developed using C#(C sharp), ASP.NET. ASP.NET is installed

on internet information server (IIS). ActiveX Data Object (ADO) is used for creating

connectivity to database and other server side objects. Database transactions are done using

Structured Query Language (SQL).

- 59 -

 Database Layer: - This layer is developed using Microsoft Access (MS-Access).

MalmSoft is online software that can be accessed using the default browser of the user‟s system.

The software is completely menu driven and offers user-friendly screens organized to simplify

and reduce effort to understand. Malmquist Index computation using MalmSoft can be carried

out in easy steps. First step deals with uploading the data file in excel to MalmSoft. After

uploading the excel file, user can select the corresponding input and output sheet from which

data needs to be uploaded. Data is uploaded into system on click of a button and summary

statistics (# of objects, # of Column and file name) along with data objects is presented to user

for verification. Once the input and output data sheets are uploaded then computation is

performed on click of a button. In the last step, results for distance functions as well as

Malmquist Index are presented to the user. At the same time, user has been given the option to

download results (for distance functions as well as Malmquist Index) in excel format.

Software is validated using suitable agricultural datasets having main input as well as

output quantities. The results have been compared with those obtained using the standard

software DEAP developed by Tim J. Coelli (Coelli, 2008) and the results are observed to be

matching. Thus, the software is free from any logical errors. This software is expected to be

useful for agricultural researchers engaged in research in agricultural economies and allied

sciences.

- 60 -

ABSTRACT

Productivity growth in agriculture is both necessary and sufficient condition for its development

and has remained a serious concern for intense research over the last five decades. Malmquist

Index is an important measure to quantify the productivity growth. Malmquist Index is used to

measure the total factor productivity change between two data points by calculating the ratio of

distances of each data point relative to a common technology (Caves et al., 1982). Modules for

Malmquist Index computation are not available in any online software and commonly used

econometric packages. After requirement analysis for Malmquist Index Computation software, it

was observed that there is a need to develop easily accessible, user friendly and interactive

software. Keeping these considerations in mind, in this thesis an attempt is made to design and

develop Online Software for Computation of Malmquist Index (MalmSoft).

MalmSoft has been designed and developed as per web based three-tier architecture. Software is

developed in Microsoft .NET environment. The User interface layer is implemented using

combination of HTML, JavaScript and CSS. ASP.NET 4.0 and C#.NET is used for writing

business logic. Database Layer is implemented for user management in MS Access. Being web

based, MalmSoft is freely accessible software for Malmquist Index. Software is completely menu

driven and offers user-friendly screens to reduce efforts in understanding the software.

The software provides functionality for computation of distance function and Malmquist Index

for an agricultural firm from one time period to another time period. User can register, login,

compute Malmquist index and see the results as well as can save result in excel file. Software

results are validated using a suitable dataset whose results have been compared with standard

software DEAP. This software is expected to be useful for agricultural researchers engaged in

research in agricultural economics and allied sciences.

- 61 -

lkj

Ñf"k esa mRikndrk o`f) blds fodkl ds fy, vko';d ,oa i;kZIr gS ,oa fiNys ikWp n'kdks ls xgu

vuqla/kku dk fo"k; cuh gqbZ gS A eYefDolV lwapdkd mRikndrk o`f} ds vkadyu ds fy, egRoiw.kZ

rjhdk gS A eYlfDolV lwpdkad dk ç;ksx ,d vke ÁkS|ksfxdh ds lkis{k ÁR;sd Ñf"k QeZ dh nwjh ds

vuqikr ds }kjk nks Ñf"k QeZ ds chp dqy dkjd mRikndrk ds ifjorZu dks ekius ds fy, fd;k tkrk

gS A eYefDolV lwpdkad dh x.kuk ds fy, fdlh Hkh vkWuykbu lkW¶Vos;j ;k vkerkSj ij bLrseky

fd;s tkus okys vFkZfeRrh; lkW¶Vos;j esa ekWMª;wy miyC/k ugha gSa A eYefDolV lwpdkad ds fy,

vko';drk fo'ys"k.k djus ds ckn ;g ik;k x;k fd ,d mi;ksxh] vuqdwy vkSj baVjSfDVo lkW¶Vos;j

fodflr djus dh t:jr gSaA bl ckr dks /;ku esa j[krs gq, bl 'kks/k esa eYefDolV lwpdkad dh

lax.kuk ds fy, vkWuykbZu lkW¶Vos;j ¼eYelkW¶V½ fodflr djus dk Á;kl fd;k x;k gS A

eYelkW¶V osc vk/kkfjr rhu Lrjh; lajpuk ij vk/kkfjr gSa A ;g lkW¶Vos;j ekbzØkslkW¶V MkWV

uSV okrkj.k esa fodflr fd;k x;k gS A mi;ksxdrkZ baVjQsl ijr ,p- Vh- ,e- ,y- tkokfLdzIV vkSj

lh-,l-,l- ds la;kstu dk mi;ksx dj dk;kZfUor fd;k x;k gSa A fctusl ykWftd ys[ku ds fy, ,-

,l-ih MkWV usV 4-0 vkSj lh 'kkiZ MkWV usV dk Á;ksx fd;k x;k gS a mi;ksxdrkZ ds Áca/ku ds fy,

MkVkcsl ijr ,e-,l- ,Dlsl esa cuk;k x;k gSa A csc vk/kkfjr gksus ds dkj.k eYelkW¶V lkW¶Vos;j

eYefDolV lwpdkad ds fy, ,d mi;ksxh lkW¶Vos;j gSa A

;g lkW¶Vos;j ,d Ñf"k QeZ ds fy, ,d le; vof/k ls nwljs le; vof/k ds fy, fMLVsal

QaD'ku vkSj ewYefDolV lwpdkad x.kuk dh lqfo/kk Ánku djrk gS A Á;ksDrk ykWfxu djus ds ckn

eYefDolV lwpdkad dh x.kuk dj ldrs gS vkSj lkFk dh ,Dlsy Qkby esa ifj.kke j[k ldrs gS A

lkW¶os;j ifj.kkeksa dh iqf"V ds fy, ,d ekud lkW¶Vos;j Mh-bZ-,-ih- ds lkFk ifj.kkeksa dh ryuk dh xbZ

gSa A ;g lkW¶Vos;j Ñf"k vFkZO;oLFkkvksa rFkk lac) foKkuksa esa vuqla/kku dj jgsa Ñf"k 'kks/kdrkZvksa ds

fy, mi;ksxh gksxk A

- 62 -

REFERENCES

Caves, D.W., Christensen, L.R. and Diewert, E. (1982). The Economic Theory of Index

Numbers of the Measurement of Input, Output and Productivity. Econometrica,

50:6(November) 1393-414.

Charnes, A., W.W.Cooper, and E. Rhodes (1978). Measuring the Efficiency of Decision

Making Units. European Journal of Operational Research, 2:6 (November) 429-44.

Coelli, T.J., Prasada Rao, D.S.,O‟Donnell, C.J. and Battese, G.E. (2005). An Introduction to

Efficiency and Productivity Analysis. Springer, New York, U.S.

Coelli, T. (1998). A Multi-Stage Methodology for the Solution of Oriented DEA Models.

CEPA Working Paper No. 1/98, Department of Econometrics, University of New England,

Arimdale, Australia.

Coelli, T.J. and Prasada Rao, D.S. (2003). Total Factor Productivity Growth in Agriculture: A

Malmquist Index Analysis of 93 Countries, 1980-2000.

Coelli, T.J.(2008). A Guide to DEAP Version 2.1: A Data Envelopment Analysis (Computer)

Program, Department of Econometrics, University of New England, Armidale, Australia,

2008.

Date, C.J., Kannan, A. And Swamynathan, S. (2006). An Introduction to Database Systems.

Dorling Kindersley (India) Pvt. Ltd., licensees of Pearson Education, New Delhi, India.

Esposito, D. (2005). Programming Microsoft ASP.NET 2.0. WP Publishers & Distributers

Private Limited, Bangalore, India.

Evjen, B., Hanselman, S. and Rader, D. (2011). Professional ASP.NET 4 in C# and VB. Wiley

- 63 -

India Pvt. Ltd., New Delhi, India.

Fare, R., S. Grosskopf, M.Norris, and Z. Zhang (1994). Productivity Growth, Technical

Progress, and Efficiency Change in Industrialized Countries. American Economic Review,

84:66-83.

Farrell, M.J. (1957). The Measurement of Technical Efficiency. Journal of the Royal

Statistical Society Series A, General, 120(3):253-81.

Gilliam, J., Ting, C. and Wyke, R. A. (1999). Pure JavaScript. G. C. Jain for Techmedia,

New Delhi, India.

Grove, R. F. (2010). Web-based application development. Jones and Bartlett Publishers

International, London, U.K.

Holzner, S. (2009). HTML Black Book. Dreamtech Press, Daryaganj, New Delhi, India.

Kumar, P., Kumar, A. and Mittal, S. (2004). Total Factor Productivity of crop sector in

the indo-gangetic plain of India: Sustainability issues revisited. Indian

Economic Review, 39(1):169-201.

MacDonald, M., Freeman, A. and Szpuszta, M. (2010). Pro ASP.NET 4 in C#, Fourth Edition

Apress.

Mayo, J. (2010). Microsoft Visual Studio 2010: A Beginner’s Guide, McGraw-Hill, ISBN:

0071668950/9780071668958.

Palanisami, K., Ranganathan, C.R., Vidhyavathi, A., Rajkumar, M. and Ajjan, N.(2011).

Performance of agriculture in river basins of Tamil Nadu in the last three decades- a total

factor productivity approach. Centre for Agricultural and Rural Development Studies,

TNAU.

Powell, T. A. and Schneider, F. (2004). JavaScript: The Complete Reference. Tata McGraw

http://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Thomas+A.+Powell%22

- 64 -

Hill Education Private Limited, New Delhi, India.

Prasad, Jagdish and Sahay, S. (1988). Tribal Women Labourers: Aspects of Economic and

Physical Exploitation. Gyan Publishing House, Delhi.

Prasad, Jagdish (1989). New Bihar – A Future Prospective [Nav Bihar – Ek Vawishaya

Nirupan]. Patel Foundation, Tanya Press, Patna.

Ray, S.C. (2004). Data Envelopment Analysis, Theory and Techniques for Economics and

Operations Research. Cambridge University Press, Cambridge, UK.

Samimul Alam, A.K.M. (2011). Web Based Software Development for Computation of Total

Factor Productivity. Unpublished M.Sc. Thesis. IARI, New Delhi, India.

Seiford, L.M. and Thrall, R.M. (1990). Recent Developments in DEA: The Mathematical

Approach to Frontier Analysis. Journal of Econometrics, 46: 7-38.

Stellman, A. and Greene, J. (2012). Head First C#. O‟Reilly Media Inc., Sebastopol, USA.

Walther, S. (2006). ASP.NET 2.0 Unleashed. Dorling Kindersley India Private Limited, New

Delhi, India.

www.dacnet.nic.in.

www.msdn.microsoft.com.

www.uq.edu.au/economics/cepa/deap.htm.

- 65 -

APPENDIX

This appendix contains code of some important modules developed for MalmSoft.

Class for creating decision variable and distinct place and year collection

MalmCompute.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI.WebControls;
using Microsoft;
using Microsoft.SolverFoundation.Services;
using Microsoft.SolverFoundation.Common;
using System.Data;
using System.Data.OleDb;

public class MalmCompute
{

 SolverContext context = SolverContext.GetContext();
 Decision phiDecision;
 DataSet ds= new DataSet();

 //for creating deision variable phi
 public MalmCompute(string phi)
 {
 phiDecision = new Decision(Domain.RealNonnegative, phi);
 }
 //For getting collection of distinct places
 public string[] getDistinctPlace(DataSet ds)
 {

 DataTable dt = ds.Tables[0];
 //data= dt.DefaultView.ToTable(true, "DISTRICT");
 DataTable distinctTable = dt.DefaultView.ToTable("input$", true, "DISTRICT");

 int ar = distinctTable.Rows.Count;
 string[] placecollection = new string[ar];
 int a = 0;
 foreach (DataRow dr in distinctTable.Rows)
 {
 placecollection[a] = dr["DISTRICT"].ToString();
 a++;
 }

- 66 -

 //Session["distinctTable"] = distinctTable;
 return placecollection;

 }

 public Decision[] getDecisionCollection(string[] distinctPlaces)
 {

 Decision[] decisions = new Decision[distinctPlaces.Length];
 string lambdas = "lambda";

 for (int i = 0; i < distinctPlaces.Length; i++)
 {
 string templ = lambdas + Convert.ToString(i + 1);
 decisions[i] = new Decision(Domain.RealNonnegative, templ);

 }

 return decisions;

 }
//For getting collection of years.
 public string[] getDistinctYear(DataSet ds)
 {

 DataTable dt = ds.Tables[0];
 //data= dt.DefaultView.ToTable(true, "DISTRICT");
 DataTable distinctYear = dt.DefaultView.ToTable("input$", true, "YEAR");

 int ar = distinctYear.Rows.Count;
 string[] yearcollection = new string[ar];
 int a = 0;
 foreach (DataRow dr in distinctYear.Rows)
 {
 yearcollection[a] = dr["YEAR"].ToString();
 a++;
 }
 //Session["distinctTable"] = distinctTable;
 return yearcollection;

 }

 }

Class for creating model

ModelCreation.cs

using System;
using System.Collections.Generic;

- 67 -

using System.Linq;
using System.Web;
using System.Data;
using Microsoft.SolverFoundation.Services;
using Microsoft.SolverFoundation.Common;
using System.Threading;

public class ModelCreation
{
 string phi;
 string ApdPlaceColName;
 string ApdYearColName;
 string[] ApdOutputColNames;
 string AidPlaceColName;
 string AidYearColName;
 string[] AidInputColNames;

 DataSet outputds;
 DataSet inputds;

 Decision[] decisions;
 Decision phiDecision;
 public ModelCreation(string phi, string ApdPlaceColName, string ApdYearColName,
string[] ApdOutputColNames, string AidPlaceColName, string AidYearColName, string[]
AidInputColNames, DataSet inputds, DataSet outputds)
 {
 //
 // TODO: Add constructor logic here
 //
 this.phi = phi;
 this.ApdPlaceColName = ApdPlaceColName;
 this.ApdYearColName = ApdYearColName;
 this.ApdOutputColNames = ApdOutputColNames;
 this.AidPlaceColName = AidPlaceColName;
 this.AidYearColName = AidYearColName;
 this.AidInputColNames = AidInputColNames;
 this.inputds = inputds;
 this.outputds = outputds;

 MalmCompute m1 = new MalmCompute(phi);
 string[] distinctPlaces = m1.getDistinctPlace(outputds);
 this.decisions = m1.getDecisionCollection(distinctPlaces);

 phiDecision = new Decision(Domain.RealNonnegative, phi);

 }
 public double getSoulution(string YEAR, string PLACE)
 {
//for creating model of linear programming
 SolverContext sc = new SolverContext();

 SolverContext context = SolverContext.GetContext();

 Model model1 = context.CreateModel();
 MalmCompute m1 = new MalmCompute(phi);

- 68 -

 string[] distinctPlaces = m1.getDistinctPlace(outputds);
 this.decisions = m1.getDecisionCollection(distinctPlaces);
 string[] distinctYears = m1.getDistinctYear(outputds);

 phiDecision = new Decision(Domain.RealNonnegative, phi);

 model1.AddDecisions(decisions);
 model1.AddDecision(phiDecision);

 // Constraints addition in the form of string expression
 string[] nonNegativeConstraint = new string[decisions.Length];
 //string nonNegativeConst = "";
 for (int i = 0; i < decisions.Length; i++)
 {
 nonNegativeConstraint[i] = decisions[i].Name + ">" + "=" + "0";
 string n = "negativity" + i.ToString();
 model1.AddConstraint(n, nonNegativeConstraint[i]);

 }

 string[] aidConstraint = getaidConstraints(YEAR, PLACE);
 string[] apdConstraint = getapdConstraints(YEAR, PLACE);
 string[] aidConstraints = new string[AidInputColNames.Length];
 for (int i = 0; i < AidInputColNames.Length; i++)
 {
 string input = "InputConstraint" + i.ToString();
 model1.AddConstraint(input, aidConstraint[i]);
 }

 //model1.AddConstraint("InputConstraint", aidConstraint[0]);
 //model1.AddConstraint("Input2Constraint", aidConstraint[1]);
 string[] apdConstraints = new string[ApdOutputColNames.Length];
 for (int i = 0; i < ApdOutputColNames.Length; i++)
 {
 string output = "OutputConstraint" + i.ToString();
 model1.AddConstraint(output, apdConstraint[i]);
 }

 model1.AddGoal("efficiency", GoalKind.Maximize, phiDecision);
 Solution solution = context.Solve(new SimplexDirective());
 double technicalefficiency = (1 / solution.Goals.First().ToDouble());

 context.ClearModel();

 return technicalefficiency;

- 69 -

 }

 public double getTechnologyChange(string YEAR, string PLACE)
 {
 SolverContext sc2 = new SolverContext();

 SolverContext context2 = SolverContext.GetContext();

 Model model2 = context2.CreateModel();
 MalmCompute m1 = new MalmCompute(phi);
 string[] distinctPlaces = m1.getDistinctPlace(outputds);
 this.decisions = m1.getDecisionCollection(distinctPlaces);

 phiDecision = new Decision(Domain.RealNonnegative, phi);

 model2.AddDecisions(decisions);
 model2.AddDecision(phiDecision);

 // Constraints addition in the form of string expression
 string[] nonNegativeConstraint = new string[decisions.Length];
 //string nonNegativeConst = "";
 for (int i = 0; i < decisions.Length; i++)
 {
 nonNegativeConstraint[i] = decisions[i].Name + ">" + "=" + "0";
 string n = "negativity" + i.ToString();
 model2.AddConstraint(n, nonNegativeConstraint[i]);

 }

 string[] aidConstraint = getaidConstraints(YEAR, PLACE);
 string[] apdConstraint = getapdConstraints(YEAR, PLACE);
 string[] aidConstraints = new string[AidInputColNames.Length];
 for (int i = 0; i < AidInputColNames.Length; i++)
 {
 string input = "InputConstraint" + i.ToString();
 model2.AddConstraint(input, aidConstraint[i]);
 }

 string[] apdConstraints = new string[ApdOutputColNames.Length];
 for (int i = 0; i < ApdOutputColNames.Length; i++)
 {
 string output = "OutputConstraint" + i.ToString();
 model2.AddConstraint(output, apdConstraint[i]);
 }

 model2.AddGoal("efficiency", GoalKind.Maximize, phiDecision);
 Solution solution = context2.Solve(new SimplexDirective());

- 70 -

 double technologychange = (1 / solution.Goals.First().ToDouble());

 context2.ClearModel();

 return technologychange;

 }

 //CONSTRAINTS CREATION IN THE FORM OF STRINGS
 //String form for Constraints
 public string[] getapdConstraints(string YEAR, string PLACE)
 {
 string[] apdConstraints = new string[ApdOutputColNames.Length];

 for (int i = 0; i < ApdOutputColNames.Length; i++)
 {

 string sumofProduct = getSumofProductString(YEAR, "Apd",
ApdOutputColNames[i]);
 string tempCol = ApdOutputColNames[i];
 DataRow[] dr = outputds.Tables[0].Select(ApdYearColName + " = " +
YEAR + " and " + ApdPlaceColName + " = '" + PLACE + "'");
 if (dr.Length > 0)
 {
 apdConstraints[i] += "(" + "-" + phiDecision.Name + "*" +
dr[0][tempCol].ToString() + "+" + (sumofProduct) + ")" + ">" + "=0";
 }

 }

 return apdConstraints;
 }
 public string[] getaidConstraints(string YEAR, string PLACE)
 {
 string[] aidConstraints = new string[AidInputColNames.Length];

 for (int i = 0; i < AidInputColNames.Length; i++)
 {

 string sumofProduct = getSumofProductString(YEAR, "Aid",
AidInputColNames[i]);
 string tempCol = AidInputColNames[i];
 //retapdCons = ApdYearColName + " = " + YEAR + " and " + ApdPlaceColName + "
= '" + PLACE + "'";
 DataRow[] dr = inputds.Tables[0].Select(AidYearColName + " = " + YEAR + " and
" + AidPlaceColName + " = '" + PLACE + "'");

- 71 -

 if (dr.Length > 0)
 {
 //aidConstraints[i] = dr[0][tempCol].ToString() - (sumofProduct) >= 0;
 aidConstraints[i] += dr[0][tempCol].ToString() + "-" +"("+
(sumofProduct) + ")" + ">" + "= 0";
 }

 }

 return aidConstraints;
 }

 public string getSumofProductString(string YEAR, string ApdorAid, string ColName)
 {
 string retSumofProductString="";
 if (ApdorAid == "Apd")
 {
 DataRow[] dr = outputds.Tables[0].Select(ApdYearColName + "=" + YEAR);
 for (int i = 0; i < dr.Length; i++)
 {
 if(i==0)
 {
 retSumofProductString+=(dr[i][ColName].ToString()+ "*"
+decisions[i].Name);

 }
 else
 {
 retSumofProductString += "+" + (dr[i][ColName].ToString() + "*" +
decisions[i].Name);
 }
 }
 }
 else
 if (ApdorAid == "Aid")
 {
 DataRow[] dr = inputds.Tables[0].Select(ApdYearColName + "=" + YEAR);
 for (int i = 0; i < dr.Length; i++)
 {
 if (i == 0)
 {
 retSumofProductString += (dr[i][ColName].ToString() + "*" +
decisions[i].Name);

 }
 else
 {
 retSumofProductString += "+" + (dr[i][ColName].ToString() + "*" +
decisions[i].Name);
 }

 }
 }

- 72 -

 return retSumofProductString;
 }

}

Code for file uploading

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.Security;
using System.Web.UI.WebControls;
using System.Data;
using System.Data.OleDb;
using System.IO;

public partial class Default7 : System.Web.UI.Page
{
 public int a, type, chk, NoOfCol, NoOfRow, noc, noc1;
 DataSet ds1, ds2;
 string selectedSheet;
 string selectedSheetInput;

 string script2 = @"<script language ='javascript' type ='text/javascript'>
function compareDDL()
{
//var str = document.FileUpload1.value;
// if (str == 0)
 alert('Same Sheets Are Selected in two Drop Down List');
}
</script>";

 protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsPostBack)
 {
 Label1.Visible = false;
 LinkButton1.Visible = false;
 Label3.Visible = false;
 Label5.Visible = false;
 DropDownList1.Visible = false;
 DropDownList2.Visible = false;
 Button2.Visible = false;
 string userID = (string)Session["id"];
 LabelUserName.Text = userID;
 }
 // Create an AdRotator control.
 AdRotator rotator = new AdRotator();

 // Set the control's properties.
 rotator.AdvertisementFile = "XMLAdFile.xml";

- 73 -

 }

 protected void Button1_Click(object sender, EventArgs e)
 {

 try
 {
 string Header = RadioButtonList1.SelectedItem.Text;
 if (FileUpload1.HasFile)
 {
 getSheetName upload1 = new getSheetName(FileUpload1, Label1, Header);
 string connstr = upload1.conStr;
 Session["conStr"] = connstr;
 string[] sheetName = upload1.excelSheetName;
 Session["sheetName"] = sheetName;

 for (int j = 0; j < sheetName.Length; j++)
 {
 DropDownList1.Items.Add(sheetName[j].ToString());
 DropDownList2.Items.Add(sheetName[j].ToString());

 }

 LinkButton1.Visible = true;
 Label3.Visible = true;
 Label5.Visible = true;
 DropDownList1.Visible = true;
 DropDownList2.Visible = true;
 }

 else
 {

 }
 }

 catch (Exception ex)
 {
 Session["errormsg"] = "File uploading failed
" + ex.ToString();
 Response.Redirect("~/Errorpage.aspx");
 }
 }

 protected void DropDownList1_SelectedIndexChanged(object sender, EventArgs e)
 {

 }

 protected void Button2_Click(object sender, EventArgs e)

- 74 -

 {
 if (selectedSheet == selectedSheetInput)
 {
 Page.ClientScript.RegisterClientScriptBlock(this.GetType(), "Compare",
script2);
 Button2.Attributes.Add("onClick", "compareDDL();");
 }

 Response.Redirect("~/Default8.aspx");

 }
 protected void DropDownList2_SelectedIndexChanged(object sender, EventArgs e)
 {
 try
 {

 selectedSheet = DropDownList1.SelectedItem.Text;
 selectedSheetInput = DropDownList2.SelectedItem.Text;
 string conStr = (string)Session["conStr"];
 fillInDataSet fds = new fillInDataSet(selectedSheet, conStr, Label1);
 fillInDataSet fdsi = new fillInDataSet(selectedSheetInput, conStr, Label1);
 ds1 = fds.ds;
 ds2 = fdsi.ds;
 noc = fds.NoOfCol;
 noc1 = fdsi.NoOfCol;
 Session["noc"] = noc;
 NoOfRow = fds.NoOfRow;
 Session["NoOfRow"] = NoOfRow;
 Session["DataSet"] = ds1;

 Session["NoOfColInInput"] = noc1;
 NoOfRow = fdsi.NoOfRow;
 Session["NoOfRowInInput"] = NoOfRow;
 Session["DataSetInput"] = ds2;

 Button2.Visible = true;
 }

 catch (Exception ex)
 {
 Session["errormsg"] = "Error occur during data uploading
" +
ex.ToString();
 Response.Redirect("~/Errorpage.aspx");
 }
 }

 protected void AdRotator1_AdCreated(object sender, AdCreatedEventArgs e)
 {

 }
 protected void LinkButton1_Click(object sender, EventArgs e)
 {
 LinkButton1.Visible = false;
 Label1.Visible = true;
 }
}

- 75 -

Code for getting result of distance function values

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using Microsoft;
using Microsoft.SolverFoundation.Services;
using Microsoft.SolverFoundation.Common;
using System.Data;

public partial class Default9 : System.Web.UI.Page
{
 string ApdPlaceColName;
 string phi;
 string ApdYearColName;
 string[] ApdOutputColNames;
 string AidPlaceColName;
 string AidYearColName;
 string[] AidInputColNames;
 DataSet outputDataSet;
 DataSet inputDataSet;
 string[] distinctYear;

 protected void Page_Load(object sender, EventArgs e)
 {
 ApdPlaceColName = "DISTRICT";
 ApdYearColName = "YEAR";
 ApdOutputColNames = new string[] { "CEREALS","PULSES","OILSEEDS","SUGARCANE"};
 AidPlaceColName = "DISTRICT";
 AidYearColName = "YEAR";
 AidInputColNames = new string[] { "FERTILIZER","RAINFALL","AREA"};
 inputDataSet = (DataSet)Session["DataSetInput"];
 outputDataSet = (DataSet)Session["DataSet"];
 MalmCompute m2= new MalmCompute(phi);
 distinctYear = m2.getDistinctYear(outputDataSet);

 }
 protected void AdRotator1_AdCreated(object sender, AdCreatedEventArgs e)
 {

 }

 protected void Button1_Click(object sender, EventArgs e)
 {
 ModelCreation mc1 = new ModelCreation(phi, ApdPlaceColName, ApdYearColName,
ApdOutputColNames, AidPlaceColName, AidYearColName, AidInputColNames, inputDataSet,
outputDataSet);

 string retSumofProductString = mc1.getSumofProductString("1991", "Aid",
"RAINFALL");
 string[] aidConstraints = mc1.getaidConstraints(distinctYear[0].ToString(),
"Bilashpur");
 string[] apdConstraints = mc1.getapdConstraints("1991", "Bilashpur");

- 76 -

 ModelCreation2 mc2 = new ModelCreation2(phi, ApdPlaceColName, ApdYearColName,
ApdOutputColNames, AidPlaceColName, AidYearColName, AidInputColNames, inputDataSet,
outputDataSet);

 DataTable dtResults = new DataTable();
 dtResults.Columns.Add(new DataColumn("PLACE", typeof(string)));
 dtResults.Columns.Add(new DataColumn("YEAR", typeof(string)));
 dtResults.Columns.Add(new DataColumn("TechnicalEfficiency", typeof(double)));
 dtResults.Columns.Add(new DataColumn("DistanceFunction", typeof(double)));
 foreach (DataRow dr in outputDataSet.Tables[0].Rows)
 {

 dtResults.Rows.Add(dtResults.Rows.Count);

 string currentyear = dr[ApdYearColName].ToString();
 string baseyear = "";
 DataTable dy = outputDataSet.Tables[0];
 string place = dr[ApdPlaceColName].ToString();
 dtResults.Rows[dtResults.Rows.Count - 1]["PLACE"] = place;
 dtResults.Rows[dtResults.Rows.Count - 1]["YEAR"] = currentyear;
 double technicalefficiency = mc1.getSoulution(currentyear, place);
 technicalefficiency = Math.Round(technicalefficiency, 4);
 dtResults.Rows[dtResults.Rows.Count - 1]["TechnicalEfficiency"] =
technicalefficiency;
 string year1 = distinctYear.ToString();

 if (currentyear ==distinctYear[0].ToString())
 {
 double technologychange = mc2.getTechnologyChange(currentyear, place,
distinctYear[1].ToString());
 technologychange = Math.Round(technologychange, 4);
 dtResults.Rows[dtResults.Rows.Count - 1]["DistanceFunction"] =
technologychange;
 }
 else
 {
 double technologychange = mc2.getTechnologyChange(currentyear, place,
distinctYear[0].ToString());
 technologychange = Math.Round(technologychange, 4);
 dtResults.Rows[dtResults.Rows.Count - 1]["DistanceFunction"] =
technologychange;
 }

 }

 Session["dtResults"] = dtResults;

 Response.Redirect("~/Default10.aspx");
 }
}

- 77 -

Code for getting result of Malmquist Index

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Data;
using System.Data.OleDb;

public partial class Default10 : System.Web.UI.Page
{
 DataTable dsResult;
 DataSet outputDataSet;
 string ApdPlaceColName;

 string phi;

 protected void Page_Load(object sender, EventArgs e)
 {
 ApdPlaceColName = "DISTRICT";
 dsResult = (DataTable)Session["dtResults"];
 outputDataSet = (DataSet)Session["DataSet"];

 GridView1.DataSource = dsResult;

 GridView1.DataBind();

 }

 protected void Button1_Click(object sender, EventArgs e)
 {
 string filename = "Table for Technical Efficiency.xlsx";
 GridViewExportToExcel.Export(filename, GridView1);

 }
 protected void Button2_Click(object sender, EventArgs e)
 {
 DataTable malmResult = new DataTable();
 malmResult.Columns.Add(new DataColumn("PLACE", typeof(string)));
 malmResult.Columns.Add(new DataColumn("MalmquistIndex", typeof(double)));

 MalmCompute M = new MalmCompute(phi);
 string[] distinct = M.getDistinctPlace(outputDataSet);
 for (int i = 0; i < distinct.Length; i++)
 {
 string distinctplace = distinct[i];
 string[] distYear = M.getDistinctYear(outputDataSet);
 malmResult.Rows.Add(malmResult.Rows.Count);
 malmResult.Rows[malmResult.Rows.Count - 1]["PLACE"] = distinctplace;

- 78 -

 //double techeffyear1 = dsResult.Columns["TECHNICALEFFICIENCY"];
 DataRow[] dr1 = dsResult.Select("PLACE = '"+distinctplace+"' AND YEAR
= distYear[0]");
 DataRow[] dr2 = dsResult.Select("PLACE = '"+distinctplace+"' AND YEAR
= distYear[1]");

 if (dr1.Length > 0 && dr2.Length > 0)
 {
 double temp1 = Convert.ToDouble(dr2[0]["TechnicalEfficiency"]) *
Convert.ToDouble(dr1[0]["DistanceFunction"]);
 double temp2 = Convert.ToDouble(dr1[0]["TechnicalEfficiency"]) *
Convert.ToDouble(dr2[0]["DistanceFunction"]);

 malmResult.Rows[malmResult.Rows.Count - 1]["MalmquistIndex"] =
Math.Round(Math.Sqrt(temp1 / temp2),4);
 }

 else
 {
 malmResult.Rows[malmResult.Rows.Count - 1]["MalmquistIndex"] = 0.0;
 }
 }

 Session["malmResult"] = malmResult;
 Response.Redirect("~/Default11.aspx");
 }
}

