
© 2011, IJARCSSE All Rights Reserved Page 1

Use of Applets for Java Cards Technology For Smart Cards

 Ravi Kant Vyas Anurag Sharma

 Neha Palod
 CSE, ITM Bhilwara ECE, ITM Bhilwara CSE, ITM Bhilwara

 vasravikant@gmail.com sharanurag@gmail.com nehapalod10@gmail.com

Abstract— Java Card technology enables smart cards and other

devices with very limited memory to run small applications,

called applets, which employ Java technology with a secure and

interoperable execution platform that can store and update

multiple applications on a single device. This accelerated process

reduces development costs, increases product differentiation, and

enhances value to customers. In a manner complementary to the

Standard, Enterprise, and Mobile editions of the Java 2

Platform, Java Card technology makes it easy to integrate

security tokens into a complete Java software solution. A smart

card runtime environment must provide the proper transaction

support for the reliable update of data, especially on multi

application cards like the Java Card. The JAVA CARD

transaction mechanism allows to protect sensitive operations on

smart cards against problems due to card tears or power losses.

Statements within a transaction are viewed as a single atomic

operation so that either they are all performed or none of them

is. We consider security problems that can be caused by a card

tear. One of the most serious problems of Smart Card System

such as Java Card is about an amount of insufficient memory.

Moreover, most of the embedded devices with Java VM support

the post-issuance of new applications. These applications are

usually stored in the memory, which is usually EEPROM.

I. INTRODUCTION

Generally, there are 256 byte code instructions in Standard
Java. However, Java Card is implemented as a subset of the
Standard Java for a limitation of a typical resource-constrained
device. We discover that instructions of 186 to 253 are neither
specified nor reserved. These free instructions can be
transformed into new instructions for improving the
performance of time and space.

Smart card support is a component of the IT infrastructure
in a growing number of sectors [5]: banking, mobile and non-
mobile communications, ID/access, government, multimedia,
etc. Most of the applications require a high-degree of
reliability. Java Card [6] is one of the leading technologies in
this sector as it provides significant features: multiple
applications, portability, and compatibility with a popular
programming language technology (Java).

The B method [7] is a good candidate for such process.
Based on the experience gathered from the development of
formal specification languages such as VDM and Z, B is one
of the foremost formal methods with a strong industrial
support. Smart cards provide the secured access to stored data.
Data on the smart card is usually not accessible for an external

application until it has authenticated itself to the card
sufficiently. If the communication only consists of read
accesses, the card can deliver the requested data without
compromising the security and integrity of the stored data. If
the external application creates or updates data on the card,
care must be taken that the integrity of the data is preserved
throughout the communication. Either all updates take place
during the communication or the data on the card is reverted to
its initial state in case of an interrupted execution.[2]

The terminal applications set up and control the
communication with the smart card and mostly also control the
consistency of their data on the card completely. Current
applications typically flag their data on the card to be
inconsistent with the first write access during a series of
updates. After all updates, the terminal application finally
records its data on the card to be consistent again. If a terminal
application is confronted with a card in an inconsistent state, its
state may be reset by the terminal application itself, but more
often must be fulfilled under special authority within a trusted
environment. The dependency of the smart card consistency on
external applications can be accepted as long as the smart card
is only used for a few critical applications where any
irregularity must be recorded and checked at a central site.
Otherwise, a smart card should not only be able to verify the
access rights of an external application, but should also provide
a tighter control over the consistency of the internally stored
data. Especially, on multi application cards where each
application on the card has access to its own data, applications
must also be able to control the integrity of their data. Thus the
underlying system must provide a proper transaction
mechanism which ensures the correct transition between
consistent states of applications and offers its functionality to
all applications residing on the card. The task of the system is
then twofold. First, the system is required to ensure that all
updates of an application are performed atomically; second, it
must perform crash recovery to provide stability: the system
must recover its state and the state of the applications to a
consistent state if a transactional computation fails. A simple
transaction model on the card may only support user level
transactions in the traditional sense. Transactions can be
assumed to begin and end within the communication with a
terminal application, are thus short lived and need not be split
in multiple sub transactions even if multiple applications
cooperate together. However, the implementation of a
transaction mechanism is hindered by the extremely limited
resources on a smart card. With RAM capacities around 1
KByte and writable EEPROM capacities around 16 KByte the

© 2011, IJARCSSE All Rights Reserved Page 2

transaction implementation must be carefully chosen. In case
of the Java Card, the underlying standard Java environment
must first be extended to offer integrated transactional
computations. The familiar programming convenience of Java
should be retained while the necessary resource demands must
be kept as minimal as possible. [2]

The JAVA CARD programming language [4] is a JAVA
dialect tailored to the development of applications for smart
cards, called applets. Its core language is a strict subset of the
JAVA object-oriented language with a set of restrictions due to
the resource-constrained smart card environment: there are
neither floating-point numbers, strings of characters, threads,
nor multi-dimensional arrays. However, because of the specific
nature of smart cards it contains some additional features
available through the system API [22]. Among them is a so-
called transaction mechanism. It is justified by security issues
concerning the possibility of tearing out a card from its reader
at any moment during a session. In such a case the consistency
of sensitive data, persistently stored on the card, should be
preserved.[3]

II. JAVA CARD INTRODUCTION

Microsystems publish the Java Card Platform Specification
and the Java Card Development Kit, which includes a
reference implementation based on the specification. Providing
the basis for cross-platform and cross-vendor applet
interoperability, version 2.2.2 of the specification includes
three documents:

The Java Card Virtual Machine Specification defines the
features, services, and behavior that an implementation of the
Java Card technology must support.

The Java Card Runtime Environment Specification defines
the necessary behavior of the runtime environment (RE) in any
implementation of the Java Card technology.

API for the Java Card Platform complements the Java Card
Runtime Environment Specification, and describes the
application programming interface of the Java Card
technology.

The Java Card Development Kit is a suite of tools for
designing implementations of the Java Card technology, and
for developing applets based on the Java Card API
Specification.

TABLE I

Java Card Component size in Kilobytes

Virtual machine 4.0

Memory management subsystem (including

transaction support)
4.0

Garbage collector for RAM and EEPROM 1.5

DES implementation (no hardware) 1.4

RSA/DSA implementation (PK coprocessor) 2.4

On-card RSA/DSA private-key generation 0.6

PK hash algorithm (SHA1) 0.6

T = 1 protocol 1.0

T = 0 protocol 0.5

T = CL (contactless) protocol 0.5

Java Card system classes (no crypto) 2.5

Java Card crypto classes (IBM proposal) 0.7

Java Card crypto classes (JC21) 5.0

OP implementation (mixed native/Java code) 8.0

Full-fledged Security Domain support 1.0

Applets required to be in ROM for VOID

compliance
1.2

A. Applet Execution
The Java Card environment shares the basic architecture

with the standard Java environment. However, due to the
limited resources on current smart cards the Java Card
sacrifices a number of Java features.

The runtime environment initiates the applet installation by
calling the install() method of its class instantiating an applet
object and registering it at the runtime environment.
An external application can initiate a session with the installed

applet by selecting it first at the runtime environment. The

select command will be forwarded by the runtime to the

applet’s select () method, each following command will be

forwarded to its process () method. The applet processes each

command and returns from its invocation with a response for

the terminal application. Thus the invocation of the applet is

event driven until the remote application finishes the card

session or selects a different applet where the current applet is

notified by the invocation of it’s deselect () method.

B. Memory Management

The applet instance and associated persistent objects of an
application are placed in the non volatile storage on a card,
usually EEPROM, provides similar read and write access as
RAM does, but with the important difference that the number

of physical writes is limited and writes to EPROM cells are

typically more than thirty times slower than writes to RAM.

Performance of writes can be increased on many current chips

by initiating block writes instead of multiple single EEPROM

writes where individual bytes are written in parallel to

EEPROM. Neither single byte nor block writes are guaranteed

to succeed in case of sudden power loss, the write operation

can suddenly fail after an arbitrary number of bits have

already been written. Thus the runtime environment can only

rely on the outcome of a single flag write as the basic building

block for transactions. Both RAM and EEPROM size is

extremely limited on current smart card hardware, ranging

typically up to 1 KByte for RAM and up to 16 KByte

EEPROM for current Java Cards.
In contrast to EEPROM, RAM loses its value in case of a

power loss. For repeated, performance and security sensitive
computations, RAM must be usable by Java Card applications.
For instance execution state, operand stack and local variables
must be placed in RAM by the virtual machine. Other than
that, the Java Card 2.1 specification allows applets to allocate
array instances explicitly in RAM. Our model extends the Java
Card specification by allowing any type of object to be placed
both in EEPROM as well as in RAM. The system is described
in detail in and especially allows the easy deployment of a
RAM garbage collector.

© 2011, IJARCSSE All Rights Reserved Page 3

Data located in RAM, i.e. execution state and transient
objects, is not considered to be part of the persistent state and
its manipulations are not recorded during the transaction due to
a number of reasons, among which are performance penalty
and security implications. Thus, only changes to the applet
objects in EEPROM must be covered by the transactional
mechanism.[2]

III. JAVA CARD SPECIFIC FEATURES

The Java Card runtime and virtual machine also support
features that are specific to the Java Card platform:

Persistence: With Java Card, objects are by default stored in

persistent memory (RAM is very scarce on smart cards, and it

is only used for temporary or security-sensitive objects). The

runtime environment as well as the bytecode has therefore

been adapted to manage persistent objects.

Atomicity: As smart cards are externally powered and rely
on persistent memory, persistent updates must be atomic. The
individual write operations performed by individual bytecode
instructions and API methods are therefore guaranteed atomic,
and the Java Card Runtime includes a limited transaction
mechanism.

Applet isolation: The Java Card firewall is a mechanism
that isolates the different applets present on a card from each
other. It also includes a sharing mechanism that allows an
applet to explicitly make an object available to other applets.

The JAVA CARD programming language contains several

highly specific features that come from the characteristics of

the smart card embedded environment. Some of them are

induced by the nature of the underlying hardware, others are

given as API for the programmer to handle security needs. In

this paper we consider three of them for which we provide the

support in the KRAKATOA tool: the way memory is

organized, the so-called card tear property and the atomic

transaction mechanism. We also reason about non atomic

method calls but for sake of clarity we will introduce them

later in this paper.

In JAVA CARD, the memory is organized in a completely
different way than in JAVA. A distinction is made between
persistent objects (stored in EEPROM) and transient (or
volatile) objects (stored in RAM). The values of persistent
objects are available during the whole card life cycle, it is
typically the case for applet objects and their fields. However,
transient data are cleared after each session between the card
and a terminal because they do not survive in the absence of
power. Generally, in JAVA CARD programs some large arrays
are allocated in transient memory in order to compute auxiliary
calculations faster.

Smart cards can be teared out of the terminal reader at any
moment during a session. As a result all transient objects are
cleared and persistent ones are left in the state they were at the
precise instant of the power loss. A major issue for the security
of an embedded application is to preserve data integrity and to
maintain a coherent memory state in case a card tear occurs.

Another topical problem is to ensure data consistency in
case a card tear occurs during a sequence of several updates to
persistent memory. To that aim the JAVA CARD API provides

a so-called transaction mechanism — as those of database
systems — that makes a set of statements as if it was a single
atomic operation. All the updates are effectively done or none
of them is.

The class javacard.framework.JCSystem contains the
methods for using the transactions. Concretely, a transaction
starts with a call to the method beginTransaction() and the
changes made from that point only become effective after
commitTransaction() is called. A transaction can be aborted
either by the system (i.e. the JAVA CARD Run time
Environment) if a card tear — or more generally any sudden
power loss — or a memory buffer overflow occurs, or by the
programmer thanks to the method abortTransaction(). In such a
case, persistent objects are reset to their values in the state just
before the transaction. Transient memory is not at all affected
by transactions, thus any assignment to a volatile variable is
done unconditionally.[3]

In JAVA CARD, the memory is organized in a completely
different way than in JAVA. A distinction is made between
persistent objects (stored in EEPROM) and transient (or
volatile) objects (stored in RAM). The values of persistent
objects are available during the whole card life cycle, it is
typically the case for applet objects and their fields. However,
transient data are cleared after each session between the card
and a terminal because they do not survive in the absence of
power. Generally, in JAVA CARD programs some large arrays
are allocated in transient memory in order to compute auxiliary
calculations faster.

Smart cards can be teared out of the terminal reader at any
moment during a session. As a result all transient objects are
cleared and persistent ones are left in the state they were at the
precise instant of the power loss. A major issue for the security
of an embedded application is to preserve data integrity and to
maintain a coherent memory state in case a card tear occurs.

Another topical problem is to ensure data consistency in
case a card tear occurs during a sequence of several updates to
persistent memory. To that aim the JAVA CARD API provides
a so-called transaction mechanism — as those of database
systems — that makes a set of statements as if it was a single
atomic operation. All the updates are effectively done or none
of them is.

The class javacard.framework.JCSystem contains the
methods for using the transactions. Concretely, a transaction
starts with a call to the method beginTransaction() and the
changes made from that point only become effective after
commitTransaction() is called. A transaction can be aborted
either by the system (i.e. the JAVA CARD Run time
Environment) if a card tear — or more generally any sudden
power loss — or a memory buffer overflow occurs, or by the
programmer thanks to the method abortTransaction(). In such a
case, persistent objects are reset to their values in the state just
before the transaction. Transient memory is not at all affected
by transactions, thus any assignment to a volatile variable is
done unconditionally. [3]

IV. SMART CARDS AND JAVA CARD

An increasing number of IT applications require that users
provide data via a portable device. Moreover, for security

© 2011, IJARCSSE All Rights Reserved Page 4

reasons, it is desirable that such devices include at least simple
processing capabilities. The smart card technology answers
these needs and gains acceptance and popularity. Unique
amongst the different smart card operating platforms, Java
Card provides vendor inter-operability and has now reached a
de facto standard status in this industry [1].

The Java Card platform provides a subset of the Java
programming language. It allows memory-constrained devices,
like smart cards, to run applications in a secure and
interoperable way. Security is obtained through Java elements,
like its secure execution environment, which controls, for
instance, the level of access to all methods and attributes; and
the applet separation by a resource named applet firewall.
Inter-operability is the characteristic that allows the execution
of a Java Card application in any smart card that follows the
Java Card specifications, independently of hardware and
software manufacturers, without or with few code
modifications.

The use of this technology brings many improvements for
the developer of smart card applications. The ease of
programming in Java, that abstracts the low level details of the
smart card system; and Java development tools (like IDEs,
simulators and emulators) allow a rapid application build, test
and installation cycle, reducing the time and the cost of
software production. Moreover, other benefits are the
possibility of multiple applications to coexist in a same card
and the ample compatibility with smart card international
standards, like ISO 7816.

An increasing number of IT applications require that users
provide data via a portable device. Moreover, for security
reasons, it is desirable that such devices include at least simple
processing capabilities. The smart card technology answers
these needs and gains acceptance and popularity. Unique
amongst the different smart card operating platforms, Java
Card provides vendor inter-operability and has now reached a
de facto standard status in this industry [1].

The Java Card platform provides a subset of the Java
programming language. It allows memory-constrained devices,
like smart cards, to run applications in a secure and
interoperable way. Security is obtained through Java elements,
like its secure execution environment, which controls, for
instance, the level of access to all methods and attributes; and
the applet separation by a resource named applet firewall.
Inter-operability is the characteristic that allows the execution
of a Java Card application in any smart card that follows the
Java Card specifications, independently of hardware and
software manufacturers, without or with few code
modifications.

The use of this technology brings many improvements for
the developer of smart card applications. The ease of
programming in Java, that abstracts the low level details of the
smart card system; and Java development tools (like IDEs,
simulators and emulators) allow a rapid application build, test
and installation cycle, reducing the time and the cost of
software production. Moreover, other benefits are the
possibility of multiple applications to coexist in a same card
and the ample compatibility with smart card international
standards, like ISO 7816.

A. Smart Card system and communication model

A smart card system is composed of hardware and software
components. These components are: Support software,
software for communication with the card acceptance device
(CAD), the CAD itself and the smart cards and their
applications.

User-CAD communication software (host application) This
software is responsible for the communication between an
external application, called “host application”, and the code
running inside the card. It sends commands for the smart card
application and receives the responses to these commands.
This software can be included in a desktop computer, in a cell
phone or in a security subsystem.

Card Acceptance Device (CAD): A CAD is the device
located between the host application and the smart card. It
supplies power to the card and is the means of communication
between the host application and the application inside the
card. A CAD can be connected to a desktop or a terminal, such
as an electronic payment terminal.

Smart Cards and their applications: Applications are
stored in the card memory. This can be done when the card is
being manufactured, installing applications in its ROM
memory, or later, installing the applications in the card’s non-
volatile and writable EEPROM .memory. The EEPROM
memory can also be written by applications to store their data.
Smart cards also have a (faster) RAM memory to store
temporary data. Languages like C, the assembly language of
the card and Java Card can be used to develop these
applications. Today, Java Card is supported in more than 95%
[8] of the cards and is considered the best choice when
productivity and security are the main requirements.

Support software: This kind of software provides services
to a smart card application. For instance, we could have an
application that allows the applet to access a credit card
operator service in a secure way.

B. The Java Card Remote Method Invocation framework

The Java Card RMI assumes that the host application needs
to use a service provided by an applet on the card as an
application programming interface (API). This service is
specified as a Java interface that extends directly the
predefined Java Remote interface (see example in Figure 1).
The methods of the corresponding implementation class (see
Figure 2) are invokable from a different virtual machine (in
this case, the host-side virtual machine). This implementation
class needs to be developed in the Java Card dialect. This class
shall inherit from the CardRemoteObject class provided by the
Java Card RMI framework that provides methods to enable and
disable the remote access to objects. The RMI also provides
the class RMI Service that translates method invocations to
APDU-level communications. Java Card imposes restrictions
due to the very nature of the platform it runs on: there is a
restricted set of basic data types, no threads, no guarantee that
there is a garbage collector either. Also, in order to avoid loss
of data consistency on the card, the Java Card framework
provides transaction facilities, as well as specific mechanisms
to distinguish persistent data (need to be maintained when the
power is turned off) from transient data (may be erased when
the card is reset).

In the Java Card environment, applications are called
applets, and are classes inheriting from the java card.

© 2011, IJARCSSE All Rights Reserved Page 5

framework.Applet class. An applet must provide an
implementation for the methods install and process. The install
method creates the applet by invoking its constructor method
and registers it in the Java Card Runtime Environment (JCRE),
by invoking the register method. The process method receives
the APDU messages of the host application, does the initial
processing of these messages, and invokes a method, passing
to it the APDU object as a parameter. In Figure 3, we present
on an example how the implementation of Remote object can
be integrated into an applet and associated with a RMI Service
object responsible for the communication with the host-side.

Finally, a reference to the remote object needs to be created
on the host-side. The Open Card framework provides functions
to get such reference. Once bound to a local object, the RMI is
transparent to the programmer.

C. Elements of Java Card programming

Programming for a smart card requires special care against
two possible problems:

Available memory Smart card usually has a very limited
amount of memory; in addition, the runtime environment does
not necessarily have a garbage collector.

The programmer needs to apply specific memory allocation
strategies. For instance, a method should avoid, at all cost,
allocation of objects, as there is no available garbage collection
mechanism. Thus, object allocation is usually restricted to the
constructor. Also Java Card provides a special exception
mechanism, where the cause of an exception is a short value
instead of a string as in Java. This mechanism is optimized to
avoid multiplicating the number of exception objects in the
card memory.

Data coherency The smart card may be physically removed
from the card acceptance device at any time, causing a power
failure and interrupting the execution of the virtual machine.
To avoid that objects get into inconsistent states, Java Card
provides a transaction mechanism that guarantees atomicity of
execution (at a cost). In addition, objects may be specified as
being persistent (maintain their value when power is turned
off) or transient (are reinitialized when power is turned off).

V. CONCLUSIONS

The main contribution of this work is to provide support for
a rigorous development of Java Card components for smart
card aware applications, based on the B method.

This paper presents the effective integration of transaction
support in the Java Card. It reports the basic transaction
semantics required by the Java Card 2.1 specification which
only requires the minimum functionality needed for simple
transactional computations. For instance, the Java Card
specification and especially its transaction model suffers from
its static allocation model where any space allocated within
transactions may not be released in case of an abort. In
contrast, we have shown that object instantiations can easily be
integrated in the transaction mechanism even in case of the
tight memory resources on a smart card. The various possible
implementation choices are discussed in detail, including
various log schemes, their impact on performance and memory
usage and possible optimizations.

REFERENCES

[1] D. Deharbe, B. G. Gomes, A. M. Moreira, “Automation of Java Card

component development using the B method”, Engineering of Complex
Computer Systems, ICECCS, 2006.

[2] M. Ostriches, “Transactions in Java Card”, Computer Security

Applications Conference, 1999.
[3] C. March, “Verification of JAVA CARD Applets Behavior with

respect to Transactions and Card Tears”, Software Engineering and

Formal Methods, SEFM 2006, 2006.
[4] M. S. Jin, M. S. Jung, “A study on how to reduce time and space by

redefining new byte code for Java Card”, 11th IEEE International

Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA'05), 2005.

[5] D. Robinson, “The worldwide market for smart cards and

semiconductors in smart cards”, Technical report, IMS Research, 2005.
[6] Z. Chen, Addison Wesley, “Java Card Technology for Smart Cards:

Architecture and Programmer’s Guide”, ISBN: 0201703297, 2000.

[7] J. R. Abrial. , “The B-Book — Assigning Programs to Meanings”.
Cambridge University Press - 0521021758.

[8] “Java card technology at-a-glance: The foundation for secure digital

identity solutions”. SUN MICROSYSTEMS INC, 2005.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=11122
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=11122
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=11122

