

© 2011, IJARCSSE All Rights Reserved Page 1

An intelligent algorithm for data conversion in distributed computing

environment using parallel processing.

Ravindra Gupta
1
, Anupam R Chaube

2
, Dr Shailendra singh.

3

,ravindra_p84@rediffmail.com, anupam_chaube@yahoo.co.in ssingh@nittterbpl.ac.in

Abstract

Data conversion is one of the major task in

computerization and the data mining process.

Thousands of private and the governmental

organizations are trying to convert the entire paper

document to soft documents. In another example

many old format wave files need to be keep safe in

very low space and there are thousands of historical

wave file need to be convert in to lower size file

format. Considering such conditions there is a need

to employee the system which will transfer

processing over the network system and save output

on the server or main system, we are proposing a

parallel computing model for the distributed

computing platforms. This model ensures easy

distribution of the software components, files and

resources along the participating computers. We

are using a concept in the model which creates slave

objects dynamically to fulfill the master/slave

parallel computing pattern. When compared with

the other similar models results show that our

model is not only a feasible model for distributed

environment but also an efficient approach of data

conversion in distributed parallel computing

environment.

 INTRODUCTION

Distributed computing deals with hardware and

software systems containing more than one processing

element or storage element, concurrent processes, or

multiple programs, running under a loosely or tightly

controlled administration. In distributed computing a

program is split up into parts that run simultaneously

on multiple computers communicating over a network.

Distributed computing is a form of parallel computing,

but parallel computing is most commonly used to

describe program parts running simultaneously on

multiple processors in the same computer. Both types

of processing require dividing a program into parts that

can run simultaneously, but distributed programs often

must deal with heterogeneous environments, network

links of varying latencies, and unpredictable failures in

the network or the computers. In Distributed

Computing approach, it is followed to assign a job to a

processor if it is idle. The focus is now on how to

optimize resources to decrease the energy consumption

by volumes of computing equipments to deal with

green and sustainability issues.[9]There are many

different types of distributed computing systems and

many challenges to overcome in successfully designing

one. The main goal of a distributed computing system

is to connect users and resources in a transparent, open,

and scalable way. Ideally this arrangement is

drastically more fault tolerant and more powerful than

many combinations of stand-alone computer systems.

Literature survey

© 2011, IJARCSSE All Rights Reserved Page 2

Various algorithm and models have been proposed,

mostly heuristic in nature, as the optimal solution often

requires future knowledge and is computationally

intensive. The most widely approach for studying DLB

algorithms is analytic modeling and simulation. For

analytic modeling, the computer system is modeled as

a queuing network with job arrivals and their resource

consumptions following certain probabilistic patterns.

Queuing network solution techniques are used to

compute performance measures [1] [8] [7] [6] Due to

limitations of the solution techniques, simulation is

often resorted to for approximate solutions [5] [4].

Some of thesource-initiated DLB algorithms are by

Eager [7] [6][5].

Task partitioning is proposed by Deelman et al [10]. It

partitions a workflow into multiple sub-workflows

which are executed sequentially. Rather than mapping

the entire workflow on Grids, allocates resources to

tasks in one sub-workflow at a time.

Architecture

Various hardware and software architectures are used

for distributed computing. At a lower level, it is

necessary to interconnect multiple CPUs with some

sort of network, regardless of whether that network is

printed onto a circuit board or made up of loosely-

coupled devices and cables. At a higher level, it is

necessary to interconnect processes running on those

CPUs with some sort of communication system.

Distributed programming typically falls into one of

several basic architectures or categories: Client-server,

3-tier architecture, N-tier architecture, Distributed

objects, loose coupling, or tight coupling.

Another basic aspect of distributed computing

architecture is the method of communicating and

coordinating work among concurrent processes.

Through various message passing protocols, processes

may communicate directly with one another, typically

in a master/slave relationship. Alternatively, a

"database-centric" architecture can enable distributed

computing to be done without any form of direct inter-

process communication, by utilizing a shared database.

If not planned properly, a distributed system can

decrease the overall reliability of computations if the

unavailability of a node can cause disruption of the

other nodes. Leslie Lamport famously quipped that: "A

distributed system is one in which the failure of a

computer you didn't even know existed can render your

own computer unusable."
[1]

Troubleshooting and diagnosing problems in a

distributed system can also become more difficult,

because the analysis may require connecting to remote

nodes or inspecting communication between nodes.

Many types of computation are not well suited for

distributed environments, typically owing to the

amount of network communication or synchronization

that would be required between nodes. If bandwidth,

latency, or communication requirements are too

significant, then the benefits of distributed computing

may be negated and the performance may be worse

than a non-distributed environment.

Methodology

Shared Data Storage

Distributed File System

1

2

3

Task ListTask ListTask ListTask List

Figure 1 : System Architecture

Figure 1.0 shows the basic block diagram of the

project. Actual task processing needs a series of steps

to be performed.

Master / Slave System: Parallel processing system

built using server / client technology. Where master

server act as a process manager system. In proposed

system whenever network initialize or the first system

user started in the network will check for active server

in the network if no server running found then it will

become host or master server and other were become

slave system. This feature can be dynamic or static

which means user can disable or enable this feature.

© 2011, IJARCSSE All Rights Reserved Page 3

Task (Conversion): This is the main input to the

parallel processing system. First user need to define the

task to perform. In proposed system it will consider a

task of batch file format conversion. Data can be

passed to the client to process or it can be placed on

shared data storage location from where all clients will

fetch data to process.

Task Assigning: Once the user provides input task on

master server then master will analyze the task and

divide it in to proper task and create its task list for

client. Once all clients get the task list to process it will

start processing. As proposed system will work on

shared data storage it will reduce network processing

and network traffic by removing data transfer

processing.

Parallel Processing: After master distributes the task

over the distributed network all clients will process

simultaneously and send acknowledgement to the

master server. Master server will also process the task

and at the same time will check for the client

processing status and monitor it on the screen.

Process Failure Detection System: Proposed system

will also manage failure of the client system at run

time. Consider a condition if any of the client get failed

due to any reason the remaining task should be

processed by other system in the network. Master

server will take care of this. It will continuously get

acknowledgment from client time to time after each

task completion. Once any client’s connection get

closed server will check work remain by specific client

and then again divide this task and pass it to other

client and client will process it.

Distributed File System: System sends data to client

for processing but it will increase system overhead. So

in proposed model data to be processed will kept on

shared storage and accessed using distributed file

system so that network protocol processing can be

reduced.

First work is to start the server on specific port in listen

mode now server is ready to get the request from the

client. Now client can make request to the server by

providing server address and the server port detail.

Client send connect request.

Server will get the connection request same as we get

the ring on mobile for connection. After this server can

accept or reject the connection and is server accept the

request, a connection link get established between

server and client this link is called as SOCKET Now

server can send the data to the client by using

SendData function and client get the data arrival ACK.

After this client can read the data using function

GetData Same thing happened with server and

communication goes on At last any one of both can

close the connection.

Model Implemented

Step 1.Format Conversion:

 Task for proposed system is

 Wav files to MP3 format conversion

 Batch file Conversion Simultaneously

on available number of client

 Each client will process same

number of files

 Distribution of files to process

 Not distribution of part of files

 Using O.S. Provided API Functions

Step 2. Network Connectivity:

server and client connected to each other using some

logical link called as “SOCKET”

 Using Functions like

 Listen

 Connect

 Accept

 SendData, GetData

Step 3. Process Distribution:

 User provides input task on master server

Master will analyze the task and divide it.

 Create its task list for client.

 Clients get the task list to process.

 All work on shared data storage.

 Reduce network processing and network

traffic by removing data transfer processing.

Step 4. Process Failure Management:

 Managing failure of the client system at run

time.

 Continuously get acknowledgment from

© 2011, IJARCSSE All Rights Reserved Page 4

client after each task completion.

 Once any client’s connection get Status

Check work retain by client

 Again divide this task and pass it to other

 client and client will process it.

Conclusion

Implementation of proposed parallel processing

distributed computing Model can reduce overheads and

it makes the proper utilization of multiple systems

rather than implementing supercomputing processor

proposed system can use normal lower configuration

PC system to complete the task and even input task is

not dependent on the single system so it reduces the

risk of failure.

Future Scope

As the system is based on master slave terminology we

can extend to dynamic role to every system. By the

time of failure any client system can become master

system and fulfill the user requirement and handle rest

of the process which can be called as backup server or

backup maser system.

References

[1] Y.Wang and R. Morris, "Load balancing in

distributed systems," IEEE Trans. Computing. C-34,

no. 3, pp. 204-217, Mar. 1985.

[2] H.S. Stone, “Critical Load Factors in Two-

Processor Distributed Systems,” IEEE Trans. Software

Eng., vol. 4, no. 3, May 1978.

[3] H.S. Stone. “Multiprocessor scheduling with the

aid of network flow algorithms”. IEEE Trans of

Software Engineering, SE-3(1):95--93, January 1977.

[4] Miron Livny, Myron Melman, “Load balancing in

homogeneous broadcast distributed systems”,

Proceedings of the Computer Network Performance

Symposium, p.47-55, April 13-14, 1982, College

Park,Maryland, United States

[5] C.H.Hsu and J.W.Liu "Dynamic Load Balancing

Algorithms in Homogeneous Distributed System,"

Proceedings of The 6
th

 International Conference on

Distributed Computing Systems, May,1986, pp. 216-

223.

 [6] Derek L. Eager, Edward D. Lazowska , John

Zahorjan, “Adaptive load sharing in homogeneous

distributed systems”, IEEE Transactions on Software

Engineering, v.12 n.5, p.662-675, May 1986.

[7] D L Eager, E D Lazowska , J Zahorjan, “A

comparison of receiver-initiated and sender-initiated

adaptive load sharing”, PerformanceEvaluation, v.6

n.1, p.53-68, March 1986.

[8] Y.C. Chow and W. Kohler, "Models for Dynamic

Load Balancing in a Heterogeneous Mu1tiiple

Processor System," IEEE Transactions on Computers,

Vol. C-28, pp. 334-361, May 1979.

[9] E Joshi “Improving Performance of Algorithms in

Distributed Computing with Perspective of Green

Information Technology”2010 International Journal of

Computer Applications (0975 - 8887) Volume 1 – No.

18.

[10]. E. Deelman et al., Pegasus: Mapping scientific

workflows onto the grid, In European Across Grids

Conference, pp. 11-20, 2004.

