
 Volume 2, Issue 2, February 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

ANONYMOUS CONNECTIONS and ONION

ROUTING
Nilesh Madhukar Patil

Lecturer, I.T.Dept.,

 Rajiv Gandhi Institute of Technology,

Mumbai,India.

Chelpa Lingam
Principal, MES’s Pillai HOC College of Engg. and

Technology,

 Rasayani, India.

Abstract— Human rights workers, activists, and spies, among other groups and even ordinary citizens, may desire

the ability to communicate via the Internet without revealing who they are or what they're doing. This can be

accomplished through the user of anonymous network protocols, whose goals are to provide anonymity to the

network user. Onion routing is a distributed P2P application that allows two peers to communicate anonymously

over the network. The main focus is to have a practical network application allowing two users to have anonymous

communication and at the same time be resistant to many network security attacks like denial of service attack, man

in the middle attack, replay attack etc. Onion Routing is one such application which enables users to have anonymous

communication and yet is so reliable from eavesdroppers and traffic analyzers. The communications in general are

bi-directional and real time.

 It first securely establishes the connection. To ensure the security well known networking and public key

cryptographic techniques are utilized. Here the identities of the sender and the receiver are kept hidden by an onion

structure, which is cryptographically layered data structure that defines the route through the onion routing network.

After the route is established by making the entries into the routing table, the data is transmitted over the channel,

which is also repeatedly encrypted. Once the data is transferred the connection is destroyed. Using symmetric and

asymmetric cryptosystems at different levels enhances further security.
Keywords— Onion routing, Crowds, Onion Proxy, dns_server, Onion, RSA, Dijkstra.

I. OBJECTIVE

A number of solutions have been developed to have

secure encrypted communication over the network and

they are pretty much resistant to a number of attacks.

But one thing these solutions do not offer is

anonymous communication [2] i.e., we do not want

the third-party to know the person with whom we are

communicating. Our objective in this paper is to

analyze the concept of onion routing and to implement

it for LAN. Onion Routing [1] is a general-purpose

infrastructure to support private and anonymous

communication [3] over a public network. Preserving

privacy not only means hiding messages sent, but also

who is talking to whom (Traffic analysis). This paper

will also discuss an experiment in which both Onion

Routing and Crowds were implemented on a

simulated network. They were compared to each other

as well as a simple protocol using Dijkstra's algorithm,

and overhead and bandwidth measurements were

taken to determine performance and usability.

II. INTRODUCTION AND OVERVIEW

Imagine standing in a large, crowded room and you

are handed a brown paper cylinder with your name on

it. The person who hands it to you tells you to peel

the paper with your name on it off of the cylinder to

expose a new layer with a new name on it–your task is

to deliver the cylinder to the

person named, tell him to peel that layer of paper off

and pass it on to the next person named and tell him to

do the same. This goes on until the very center of the

cylinder is handed off to the person to whom it is

addressed. The idea is that the center of the cylinder

contains a message sent to the final recipient by the

very first person to hand the cylinder off. But,

because the cylinder travelled through so many hands,

and along a random path through the crowd, anyone

observing the receipt of the final message (or any of

the hand-offs at any point along the way, for that

matter) has no idea where it came from originally; he

or she only saw the final hand-off in a relay of hand-

offs. In onion routing, instead of establishing a direct

connection between the two hosts that want to

communicate, the connection will be routed through a

set of routers called onion routers and thereby allow

the communication to be anonymous. Every node will

only have information about its previous hop and the

next hop i.e., the person who he/she is communicating

with and the person with whom he/she is supposed to

communicate.

The information passed on between the routers is

modified accordingly so that no other information is

http://www.ijarcsse.com/

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

passed on. Thus any router does not have any idea of

who is the initiator of the connection neither does

he/she will have the information of the destination.

Only the last node on the route which establishes a

connection with the destination finally has information

of the destination. Data appearing at each onion router

is different and is padded at different levels to keep

the length of the data constant.

Onion routing [5] is basically associated with a set of

proxies which help in communication. The initiator

first establish an initiating connection with

Application Proxy on his/her machine through which

the communications are routed to the Onion Proxy

which define the route to the destination and construct

the onion, the data structure that will be passed

between the nodes. Onion Proxy establishes the

connection with the Entry Funnel of the first node in

the route and passes on the onion to it.

Fig.1 Onion Routing

The Entry Funnel on receiving the onion sends it to its

own router, which basically strips of a layer of onion

to get details about the next node on the route and

accordingly modify the onion and send it to the next

router. This way the onion moves in between the

routers defined in the route and finally reaches the last

node in the route where the onion is passed to the Exit

Funnel of that particular node which establishes

connection with the final destination for

communicating the information. Each layer contains

information about the next hop and also a key seed

material which basically helps in deriving keys which

are used for successive encryption of data to be

transmitted.

Once the communication is established between

initiator and destination, data is exchanged between

the two. The data is transmitted by repeatedly

encrypting it with the keys derived from the key seed

material. The encryption is done with the key of the

last route first and so on and finally with the key of the

first router. The encrypted message moves through the

nodes removing a layer of encryption at each node and

finally the data reaches the destination in plain text.

As the data moves through the network, it appears

different at different stages and thus prevents snooping

by comparing the packets. Every onion layer also has

associated with it an expiration time. Thus every

router stores a copy of onion till the time expires and

hence if a duplicate onion appears within this period,

it is ignored and also the onion is ignored if it appears

after the expiration time. Thus replay attack is

controlled.

Fig. 2 Structure of Onion

The advantages of onion routing is that it is not

necessary to trust each cooperating router; if one or

more routers are compromised, anonymous

communication can still be achieved. This is because

each router in an Onion Router network accepts

messages, re-encrypts them, and transmits to another

onion router. An attacker with the ability to monitor

every onion router in a network might be able to trace

the path of a message through the network, but an

attacker with more limited capabilities will have

difficulty even if he controls one or more onion

routers on the message’s path.

Although the name related is to something taking

place at the network layer of the protocol stack, it

should be noted that Onion Routing operates at the

Application layer of the Protocol Stack. TCP sockets

are used for connection-oriented service.

Crowds [7] is another anonymous protocol, which is

similar in operation to Onion Routing. The differences

are in the encryption scheme and in the path selection.

In Crowds, the paths are chosen dynamically as a

message is set, rather than setting up a circuit as Onion

Routing does. Cooperating proxies on the network are

always chosen randomly on a hop-by-hop basis. When

a message is received a proxy will decide to extend

the path to a random proxy based on the probability of

forwarding, or the proxy will become the last node in

the path and communicate with the responder directly.

In the figure (Fig. 3), proxy A receives the packet,

calculates the probability of forwarding, which is

based on a weighted coin flip, and determines that it

will send the message on to another proxy. It then

sends message to the randomly selected proxy B,

which repeats the process and sends the message to

proxy C. When proxy C flips the biased coin, it

determines that it will become the last proxy in the

path and will send the message directly to the receiver.

The path is used for a limited amount of time, after

which the path must be reformed. The main drawback

to Crowds is the lack of receiver anonymity.

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

Fig. 3 Crowd Simulation

III. IMPLEMENTATION DETAILS

Our implementation of Onion Routing is in Java and

consists of a client who wants to communicate certain

messages with a host server and the client has the

information about the server but the server does not

know anything about client. The following steps are

involved in our implementation -

 Network Setup: starts the Onion Router

servers and establishes the longstanding

connections between Onion Routers

 Starting Services: Starting the Onion Proxy,

Application Proxy, host server

 Connection Setup: Client establishes

anonymous connection with host server

 Data transfer: Transfer of messages from

client to server

A. Network Setup

This stage involves the setting of long standing

connections between various onion routers. The

connections are pre-established over here to avoid

latency that might arise later for setting up the

connections between various routers and also to

provide anonymity. The path selected for connection

is the shortest one found using the Dijkstra’s Shortest

Path algorithm [10]. Every onion router starts a server

and clients to connect with other Onion Routers. To

avoid duplication of connections between onion

routers, a hierarchical setup is used. All the onion

routers have a list of onion routers that are running in

the setup. So an entry in the list which is at the bottom

just starts the server and waits for client connections

from others. An entry above this starts its server and a

client establishes a connection with the server below it

and so on. Thus any intermediate node starts a server

to accept connections from nodes above it and clients

which establish connections with the servers of routers

below them. There is also a looping in trying to

establish the connection i.e., server will run

indefinitely. So to make the configuration dynamic,

whenever a new router comes in, it is added to the top

of the routers list.

The connection setup stage also involves

authentication and exchange of keys that will be used

for encryption for further communication between the

routers. This is implemented by the RSA Key

exchange mechanism [4]. So at the end of

establishment of connection, key exchange takes place

and every two routers have a unique exchange among

themselves which is known only to them and the

router with which it communicates.

Once the router establishes connection with all the

routers in the list, it starts its Entry Funnel server to

listen to connections from Onion Proxies to receive

onions and Exit Funnel server to listen from its router

if it is the last node in the route of connection, so that

it can establish the connection with the host server as

the need arises.

Fig. 4 Communication

B. Starting Services

This stage involves setting up of various proxies and

the starting of the host service that offers the services

and supports the current protocol. Later the system can

be extended to support any basic TCP connection and

hence we will be able to implement anonymous

communication between any client and any server

which runs on the internet.

Client side setup involves starting of Application

Proxy and Onion Proxy. Onion Proxy gets the static

configuration of all the onion routers which are active.

C. Connection Setup

The user starts the client and gives the details of the

server with which it wants to communicate with. The

client establishes a connection with the application

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

proxy and sends the relevant information. The

application proxy constructs a standard structure out

of these details from the client and sends the standard

structure to the Onion Proxy. Onion Proxy on

receiving the standard structure, randomly picks up a

route for communication from the list of nodes and

constructs the onion by adding a onion layer for every

node through which the onion passes. Having

constructed the onion, the onion proxy establishes a

connection with the entry funnel of the first node in

the route and sends the onion. The entry funnel on

receiving the onion transmits it to the onion router at

the same node with which it has a pre-established

connection. The onion router strips of the first layer to

get the details of the key seed material and the next

hop in the route. It then pads this stripped off onion

with random string at end to maintain the length and

send it to the next router. This continues till the onion

reaches the last node in the route which realizes that it

is the last node and hence the onion is sent to the exit

funnel of the corresponding node.

The exit funnel gets the destination details and

establishes the connection with the destination. Thus

the anonymous connection is established with the

destination i.e., a route is defined for the client to

communicate with the host server in our case. Each

layer stripped off, contains key seed material which is

later used to strip off a layer of encryption from the

data packets.

Fig. 5 Connection Setup

D. Data Transfer

Once the connection to the host server has been

established through the route, the client can

communicate with it by sending messages. The

message is sent to the onion proxy through the

application proxy. Onion Proxy having the knowledge

of all the key seed materials encrypts the data of nodes

of the route in the reverse order. The cell is passed on

to the entry funnel and then to router to different

routers in the node (note that at every router, a layer of

encryption is removed) and finally reaches the exit

funnel of the last node from which the message is sent

to the host server. This process continues indefinitely

to exchange a large amount of volume.

IV. MODULES DEVELOPED

A. CLIENT

After client is authenticated, it will try to connect with

the dns_server. After successful connection is

established, dns_server will send a file consisting of IP

addresses, host names and port numbers of all the

active PC’s. Then client will establish connection with

the desired server (Destination) and send file to it.

After the file is successfully sent, Client will get a

notification about it.

B. SERVER

After server is authenticated, it will try to connect with

the dns_server. After successful connection is

established, dns_server will send a file consisting of IP

addresses, host names and port numbers of all the

active PC’s. Then when client tries to connect with it,

server may accept or reject. Also, encryption and

decryption of data takes place in this class.

C. DNS_SERVER

As soon as the application is started, all the active

PC’S will connect with the dns_server who will accept

all the connections. It will then send a file consisting

of updated IP addresses, host names and port numbers

of all this PC’s to every other PC.

D. ONION PROXY

Client will send its data to onion proxy. Then onion

proxy will form a standard structure (onion) by

breaking the data into fixed size packets and

encrypting it. It will then forward this structure to

other nodes (where decryption takes place) on the path

till the node reached is destination.

Note: In this application, every PC can act as

dns_server, server (destination) and client.

V. SIMULATION IN PYTHON

Our simulation outputs statistics about the bandwidth

and the overhead of each protocol for a certain sized

network.

The software, when run will produce various outputs.

You will see live graphs presenting simulation [8] [9]

data during the run. One graph will be for bandwidth,

and the other graph for overhead. The bandwidth

graph represents the amount of data sent using a

protocol divided by the amount of time it took to send

the data. The overhead graph simply represents the

amount of time it took to send the data (the bandwidth

divisor). Hence, for speed, high bandwidth and low

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

overhead are desirable. The graphs will look as

follows.

Fig. 6 Bandwidth Graph

The lines at the top of the above graph (Fig. 6) show a

better bandwidth measurement, which indicates higher

speeds. This graph shows that our simple protocol had

very high bandwidth measurements, with Crowds and

Onion Routing lingering at much lower speeds.

Crowds has slightly better measurements for

bandwidth than Onion Routing, which supports the

prediction in our hypothesis. It is notable that the

difference in performance between Onion Routing and

Crowds is not nearly as significant in the jump

between speeds using either anonymous protocol and

a simple shortest-path protocol. From these

measurements we can conclude that the anonymity

provided by either Crowds or Onion Routing comes

with a high cost, and is probably not for the everyday

user.

Fig. 7 Overhead Graph

The graph (Fig. 7) above shows overhead

measurements for our three implemented protocols.

It's clear that Onion Routing has more overhead than

Crowds, especially as the network grows larger. Note

the significance in time delays between the simple

protocol and either anonymous protocol-- a browser

running an anonymous protocol might experience two

to three times more delay than a standard browser,

which would be enough to cause many casual users to

abandon hopes of anonymity in exchange for speed.

During the run, certain snapshots of the network will

also be created. These snapshots will be saved to the

current directory with filenames in the form

nodes_10_protocol_simple.png. This denotes that the

snapshot is for a network of 10 nodes, and the

highlighted path is the path chosen by the simple

protocol. The snapshots will have colored circles

which represent nodes in the network, and edges

between the nodes. The width of the edges represents

the latency of the connection between the two nodes,

and so, wide edges are slow connections (bad) while

thin edges are fast connections (good.) Blue nodes and

pink edges denote the path chosen by the current

protocol, with the first blue node being the source, and

the last blue node being the destination of the

connection. The snapshots will look as follows.

Fig. 8 Network Snapshot in Python

VI. CONCLUSION

Here we presented a protocol called Onion Routing.

The purpose of Onion Routing is to protect the

anonymity of a user who wants to communicate over a

network. In particular, it will hide the destinations of

all communications initiated by the user. Any outside

observers will not be able to tell whom the user is

communicating with and for how long. To achieve this

goal, Onion Routing uses Public Key Encryption to

put multiple layers of encryption around the original

data packet, thus creating an object called an onion.

This onion will follow a specific route through the

network, and at each route a layer of encryption will

be peeled off. Once the onion reaches its destination it

will have been reduced to the original data packet.

When a router decrypts the onion using its private key

it will only get the address of the next router along the

path. So no router will ever know the full path that is

travelled by the onion. Since no outside observer will

be able to follow an onion while it is travelling

through the network, the communication is completely

anonymous.

The application aimed at is developed as efficiently as

possible and is tested in the live local network.

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

Subsequently we would like to extend this to include

all the improvements that have been mentioned in the

above discussion so far. Also we would like to

incorporate more features to allow communications

multiple clients, servers; support various encryption

mechanisms and protocols etc. in the coming versions.

We would also like to make this more robust so that

this can be used as a commercial application.

VII. RESULTS

Fig. 8 Login Screen

Fig. 9 Operation to be Performed

Fig. 10 Destination Selection

Fig. 11 File to be Shared

Fig. 12 File Successfully Transmitted

REFERENCES

[1] Michael G. Reed, Paul F. Syverson, and David M.
Goldschlag Anonymous Communication and Onion Routing,

IEEE Journal on Selected Areas in Communication Special

Issue on Copyright and Privacy Protection, 1998.
[2] Roger Dingledine, Nick Mathewson and Paul Syverson, Tor:

The Second-Generation Onion Router, Proceedings of the

13th USENIX Security Symposium, August 2004.

[3] The Anonymizer, http://www.anonymizer.com.

[4] Wikipedia RSA, http://en.wikipedia.org/wiki/RSA

[5] K. Kaviya Network Security Implementation by Onion
Routing, International Conference on Information and

Multimedia Technology, 2009.

[6] Public_key_cryptography
http://en.wikipedia.org/wiki/Public_key_cryptography

[7] M. Wright, M. Adler, B.N. Levine and C. Shields, An

analysis of the Degradation of Anonymous Protocols. In
Proceedings, ISOC Network and Distributed System Security

Symposium (NDSS), 2002.

[8] Gnuplot - Command line plotting software
http://www.gnuplot.info

[9] Networkx - Python Graph library http://networkx.lanl.gov

[10] www.mathworld.wolfram.com/DijkstrasAlgorithm.html

http://www.anonymizer.com/
http://en.wikipedia.org/wiki/RSA
http://www.gnuplot.info/
http://networkx.lanl.gov/

