
Volume 2, Issue 2, February 2012 ISSN: 2277 128X

International Journal of Advanced Research in
Computer Science and Software Engineering

Research Paper
Available online at: www.ijarcsse.com

A Comparative Study of Software Reliability Models Using

SPC on Ungrouped Data

G.Krishna Mohan

Reader,

Dept. of Computer Science

P.B.Siddhartha college

Vijayawada.

km_mm_2000@yahoo.com

B. Srinivasa Rao

Associate Professor

Dept. of Compute Science

VRS & YRN College

Chirala

sreenibandla@yahoo.com

Dr. R.Satya Prasad

Associate Professor

Dept. of CS&E.

Acharya Nagrjuna University

Nagarjuna Nagar.

profrsp@gmail.com

Abstract—Control charts are widely used for process monitoring. Software reliability process can be monitored efficiently by using

Statistical Process Control (SPC). It assists the software development team to identify failures and actions to be taken during software

failure process and hence, assures better software reliability. If not many, few researchers proposed SPC based software reliability

monitoring techniques to improve Software Reliability Process. In this paper we propose a control mechanism based on the

cumulative quantity between observations of time domain failure data using mean value function of Weibull and Goel-Okumoto

distribution, which are based on Non Homogenous Poisson Process (NHPP). The Maximum Likelihood Estimation (MLE) method is

used to derive the point estimators of the distributions.

Keywords— Statistical Process Control, Software reliability, Weibull Distribution, Goel-Okumoto distribution, Mean Value function,

Probability limits, Control Charts.

I. INTRODUCTION

Software reliability assessment is important to evaluate and

predict the reliability and performance of software system,

since it is the main attribute of software. To identify and

eliminate human errors in software development process and

also to improve software reliability, the Statistical Process

Control concepts and methods are the best choice. SPC

concepts and methods are used to monitor the performance of

a software process over time in order to verify that the process

remains in the state of statistical control. It helps in finding

assignable causes, long term improvements in the software

process. Software quality and reliability can be achieved by

eliminating the causes or improving the software process or its

operating procedures [1].

The most popular technique for maintaining process control

is control charting. The control chart is one of the seven tools

for quality control. Software process control is used to secure

the quality of the final product which will conform to

predefined standards. In any process, regardless of how

carefully it is maintained, a certain amount of natural

variability will always exist. A process is said to be

statistically “in-control” when it operates with only chance

causes of variation. On the other hand, when assignable

causes are present, then we say that the process is statistically

“out-of-control.”

The control charts can be classified into several categories,

as per several distinct criteria. Depending on the number of

quality characteristics under investigation, charts can be

divided into univariate control charts and multivariate control

charts. Furthermore, the quality characteristic of interest may

be a continuous random variable or alternatively a discrete

attribute. Control charts should be capable to create an alarm

when a shift in the level of one or more parameters of the

underlying distribution or a non-random behavior occurs.

Normally, such a situation will be reflected in the control

chart by points plotted outside the control limits or by the

presence of specific patterns. The most common non-random

patterns are cycles, trends, mixtures and stratification [2]. For

a process to be in control the control chart should not have any

trend or nonrandom pattern.

SPC is a powerful tool to optimize the amount of

information needed for use in making management decisions.

Statistical techniques provide an understanding of the business

http://www.ijarcsse.com/

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

baselines, insights for process improvements, communication

of value and results of processes, and active and visible

involvement. SPC provides real time analysis to establish

controllable process baselines; learn, set, and dynamically

improves process capabilities; and focus business areas which

need improvement. The early detection of software failures

will improve the software reliability. The selection of proper

SPC charts is essential to effective statistical process control

implementation and use. The SPC chart selection is based on

data, situation and need [3]. Many factors influence the

process, resulting in variability. The causes of process

variability can be broadly classified into two categories, viz.,

assignable causes and chance causes.

The control limits can then be utilized to monitor the failure

times of components. After each failure, the time can be

plotted on the chart. If the plotted point falls between the

calculated control limits, it indicates that the process is in the

state of statistical control and no action is warranted. If the

point falls above the UCL, it indicates that the process average,

or the failure occurrence rate, may have decreased which

results in an increase in the time between failures. This is an

important indication of possible process improvement. If this

happens, the management should look for possible causes for

this improvement and if the causes are discovered then action

should be taken to maintain them. If the plotted point falls

below the LCL, It indicates that the process average, or the

failure occurrence rate, may have increased which results in a

decrease in the failure time. This means that process may have

deteriorated and thus actions should be taken to identify and

the causes may be removed. It can be noted here that the

parameter a, b should normally be estimated with the data

from the failure process. Since a, b are the parameters in the

proposed distributions, any traditional estimator can be used.

The control limits for the chart are defined in such a

manner that the process is considered to be out of control

when the time to observe exactly one failure is less than LCL

or greater than UCL. Our aim is to monitor the failure process

and detect any change of the intensity parameter. When the

process is normal, there is a chance for this to happen and it is

commonly known as false alarm. The traditional false alarm

probability is to set to be 0.27% although any other false

alarm probability can be used. The actual acceptable false

alarm probability should in fact depend on the actual product

or process [9].

II. LITERATURE SURVEY

This section presents the theory that underlies the proposed

distributions and maximum likelihood estimation for complete

data. If „t‟ is a continuous random variable with

pdf: 1 2(; , , ,)kf t . Where 1 2, , , k are k unknown

constant parameters which need to be estimated, and cdf:

 F t . Where, The mathematical relationship between the

pdf and cdf is given by:

()
d F t

f t
dt

 . Let „a‟ denote the

expected number of faults that would be detected given

infinite testing time in case of finite failure NHPP models.

Then, the mean value function of the finite failure NHPP

models can be written as: () ()m t aF t . where, F(t) is a

cumulative distribution function. The failure intensity function

()t in case of the finite failure NHPP models is given by:

() '()t aF t [8].

A. NHPP model

The Non-Homogenous Poisson Process (NHPP) based

software reliability growth models (SRGMs) are proved to be

quite successful in practical software reliability engineering

[4]. The main issue in the NHPP model is to determine an

appropriate mean value function to denote the expected

number of failures experienced up to a certain time point.

Model parameters can be estimated by using Maximum

Likelihood Estimate (MLE). Various NHPP SRGMs have

been built upon various assumptions. Many of the SRGMs

assume that each time a failure occurs, the fault that caused it

can be immediately removed and no new faults are introduced.

Which is usually called perfect debugging. Imperfect

debugging models have proposed a relaxation of the above

assumption [5,6].

Let , 0N t t be the cumulative number of software

failures by time „t‟. m(t) is the mean value function,

representing the expected number of software failures by time

„t‟. t is the failure intensity function, which is

proportional to the residual fault content. Thus

 (1)btm t a e and
()

(())
dm t

t b a m t
dt

 .

where „a‟ denotes the initial number of faults contained in a

program and „b‟ represents the fault detection rate. In software

reliability, the initial number of faults and the fault detection

rate are always unknown. The maximum likelihood technique

can be used to evaluate the unknown parameters. In NHPP

SRGM t can be expressed in a more general way as

()dm t

t b t a t m t
dt

. where a t is the time-

dependent fault content function which includes the initial and

introduced faults in the program and b t is the time-

dependent fault detection rate. A constant a t implies the

perfect debugging assumption, i.e no new faults are

introduced during the debugging process. A constant b t

implies the imperfect debugging assumption, i.e when the

faults are removed, then there is a possibility to introduce new

faults.

B. Goel-Okumoto distribution

The Goel-Okumoto model is a simple NonHomogenous
Poisson Process (NHPP) model with the mean value function

 1 btm t a e [12]. Where the parameter „a‟ is the

number of initial faults in the software and the parameter „b‟
is the fault detection rate. The corresponding failure intensity

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

function is given by btt abe . The probability density

function of a Goel-Okumoto model has the form:

() btf t be . The corresponding cumulative distribution

function is: 1 btF t e .

C. Weibull distribution

The Weibull distribution is a generalization of exponential
distribution, which is recovered for β = 1. Although the
exponential distribution has been widely used for times-
between-event, Weibull distribution is more suitable as it is
more flexible and is able to deal with different types of aging
phenomenon in reliability. Hence in reliability monitoring of
equipment failures, the Weibull distribution is a good
alternative. The probability density function of a two-
parameter Weibull model has the form:

 1
()

bt
f t b bt e

 . Where b > 0 is a scale parameter

and 0 is a shape parameter. The corresponding

cumulative distribution function is: ()1 btF t e
 . The

mean value function

() 1 nbt
m t a e

. The failure

intensity function is given as:
1 ()() . btt ab t e

 .

D. MLE (Maximum Likelihood) Parameter Estimation

The idea behind maximum likelihood parameter estimation
is to determine the parameters that maximize the probability
(likelihood) of the sample data. The method of maximum
likelihood is considered to be more robust (with some
exceptions) and yields estimators with good statistical
properties. In other words, MLE methods are versatile and
apply to many models and to different types of data. Although
the methodology for maximum likelihood estimation is simple,
the implementation is mathematically intense. Using today's
computer power, however, mathematical complexity is not a
big obstacle. If we conduct an experiment and obtain N

independent observations, 1 2, , , Nt t t . The likelihood

function [7] may be given by the following product:

 1 2 1 2 1 2

1

, , , | , , , (; , , ,)
N

N k i k

i

L t t t f t

Likely hood function by using λ(t) is:

1

()
n

i

i

L t

The logarithmic likelihood function is given by:

1

1

log log ()

log () ()

n

i

i

n

i n

i

L t

t m t

The maximum likelihood estimators (MLE) of

1 2, , , k are obtained by maximizing L or , where is

ln L . By maximizing , which is much easier to work with
than L, the maximum likelihood estimators (MLE) of

1 2, , , k are the simultaneous solutions of k equations

such as:
0

j

, j=1,2,…,k

The parameters „a‟ and „b‟ are estimated as follows. The
parameter „b‟ is estimated by iterative Newton Raphson

Method using
1

()

'()

n
n n

n

g b
b b

g b

, which is substituted in

finding „a‟.

III. ILLUSTRATING THE MLE METHOD

A. Goel-Okumoto parameter estimation

The likelihood function is given as, ()

1

N
bt

i

L abe

Taking the natural logarithm on both sides, The Log
Likelihood function is given as:

() ()

1

log log() [1]i n

n
bt bt

i

L abe a e

 .

Taking the Partial derivative with respect to „a‟ and

equating to „0‟. (i.e
log

0
L

a

).

1 nbt

n
a

e

Taking the Partial derivative with respect to „b‟ and

equating to„0‟.(i.e
log

() 0
L

g b
b

).

 1

() 0
1

n

n

btn

i n bt
i

n e
g b t nt

b e

Taking the partial derivative again with respect to „b‟ and

equating to „0‟. (i.e
2

2

log
'() 0

L
g b

b

).

2

2 2

1
'()

1 1

n

n

n
n

bt

bt

n bt bt

n e
g b nt e

b e e

B. Weibull parameter estimation

The likelihood function, assuming 2 (Rayleigh) is

given as, 22 ()

1

2 .
N

bt

i

L ab t e

Taking the natural logarithm on both sides, The Log
Likelihood function is given as:

22 ()2 ()

1

log log(2) [1]n

n
btbt

i

i

L ab t e a e

 .

Taking the Partial derivative with respect to „a‟ and

equating to „0‟. (i.e
log

0
L

a

).

2

1 nbt

n
a

e

Taking the Partial derivative with respect to „b‟ and

equating to„0‟.(i.e
log

() 0
L

g b
b

).

2

2

2
2

1

2. . . .2
() 2 0

1

n

n

btn
n

i
bt

i

n b t en
g b b t

b e

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

Taking the partial derivative again with respect to „b‟ and

equating to „0‟. (i.e
2

2

log
'() 0

L
g b

b

).

22

2
2

2 2
2 2

22
1

2 .1
'() 2 2 2

1 1

nn

n
n

btbtn
n

i n
bt bti

b t ee
g b n t nt

b e e

C. Distribution of Time between failures

Based on the inter failure data given in Table 1, we
compute the software failures process through Mean Value
Control chart. We used cumulative time between failures data
for software reliability monitoring using Goel-Okumoto and
Weibull distributions. The use of cumulative quality is a
different and new approach, which is of particular advantage
in reliability.

„ a

‟ and „ b

‟ are Maximum Likely hood Estimates of

parameters and the values can be computed using iterative
method for the given cumulative time between failures data
[10] shown in table 1. Using „a‟ and „b‟ values we can

compute ()m t .

TABLE 1. TIME BETWEEN FAILURES OF A SOFTWARE

Failure

Number

Time

between

failure(h)

Failure

Number

Time

between

failure(h)

1 30.02 16 15.53

2 1.44 17 25.72

3 22.47 18 2.79

4 1.36 19 1.92

5 3.43 20 4.13

6 13.2 21 70.47

7 5.15 22 17.07

8 3.83 23 3.99

9 21 24 176.06

10 12.97 25 81.07

11 0.47 26 2.27

12 6.23 27 15.63

13 3.39 28 120.78

14 9.11 29 30.81

15 2.18 30 34.19

Assuming an acceptable probability of false alarm of 0.27%,

the control limits can be obtained as [10]:

1 0.99865
bt

UT e

1 0.5
bt

CT e

1 0.00135
bt

LT e

These limits are converted to ()Um t , ()Cm t and ()Lm t

form. They are used to find whether the software process is in
control or not by placing the points in Mean value chart
shown in figure 1 and figure 2. A point below the control limit

()Lm t indicates an alarming signal. A point above the

control limit ()Um t indicates better quality. If the points are

falling within the control limits, it indicates the software
process is in stable condition [11]. The values of parameter
estimates and the control limits are given in table 2 and 3
respectively.

TABLE 2. PARAMETER ESTIMATES

model a b

GO 31.698171 0.003962

Weibull 30.051592 0.003416

TABLE 3. CONTROL LIMITS.

model)(Utm

)(Ctm

)(Ltm

GO 31.676760 21.132114 0.085469

Weibull 30.011170 15.025870 0.040570

TABLE 4. MEAN SUCCESSIVE DIFFERENCES OF GO

FN m(t) SD

1 3.554578 0.160101

2 3.714687 2.383587

3 6.098274 0.137569

4 6.235844 0.343684

5 6.579527 1.279946

6 7.859432 0.481484

7 8.340916 0.351758

8 8.692674 1.836638

9 10.529312 1.060330

10 11.589642 0.037410

11 11.627052 0.489356

12 12.116408 0.261248

13 12.377656 0.684916

14 13.062573 0.160266

15 13.222838 1.102518

16 14.325356 1.683122

17 16.008478 0.172479

18 13.180956 0.117592

19 16.298549 0.249935

20 16.548483 3.690661

21 20.239144 0.749363

22 20.988508 0.167971

23 21.156479 5.293999

24 26.450479 1.441653

25 27.892132 0.034077

26 27.926209 0.226497

27 28.152706 1.348363

28 29.501069 0.252475

29 29.753545 0.246358

30 29.999903

TABLE 5. MEAN SUCCESSIVE DIFFERENCES OF WEIBULL

FN m(t) SD

1 0.314371 0.030704

2 0.345076 0.657725

3 1.002801 0.050307

4 1.053108 0.132025

5 1.185134 0.575065

6 1.760199 0.252180

7 2.012380 0.197261

8 2.209641 1.219663

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

9 3.429305 0.859242

10 4.288547 0.032507

11 4.321054 0.439360

12 4.760415 0.245447

13 5.005863 0.680255

14 5.686118 0.166975

15 5.853094 1.230688

16 7.083782 2.161267

17 9.245050 0.240957

18 9.486008 0.166350

19 9.652358 0.359124

20 10.011482 6.120127

21 16.131610 1.396357

22 17.527968 0.317624

23 17.845592 9.491850

24 27.337443 1.649185

25 28.986628 0.029822

26 29.016451 0.186649

27 29.203101 0.697874

28 29.900976 0.058849

29 29.959825 0.040168

30 29.999994

Figure 1 and 2 are obtained by placing the time between

failures cumulative data shown in tables 3, 4 on y axis and
failure number on x axis, and the values of control limits are
placed on Mean Value chart. The Mean Value chart of Goel-
Okumoto shows that the 10

th
 and 25

th
 failure data has fallen

below ()Lm t . The Mean Value chart of weibull shows that

the 1
st
 ,10

th
 and 25

th
 failure data has fallen below ()Lm t . The

successive differences of mean values below ()Lm t indicates

the failure process. In the present scenario, It is significantly
early detection of failure through weibull using Mean Value
Chart. The software quality is determined by detecting failures
at an early stage. The Remaining Failure data shown in figure
1 are in stable condition. No failure data fall outside

the ()Um t . It does not indicate any alarm signal.

Failure Control Chart

UCL=31.676760

CL=21.132114

LCL=0.085469

0.010000

0.100000

1.000000

10.000000

100.000000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Failure Number

M
e
a
n

 V
a
lu

e
 S

u
c
c
e
s
s
iv

e

D
if

fe
re

n
c
e
s

Figure: 1 GO Failure Control Chart

Mean Value Chart

UCL=30.011022

CL=15.025796

LCL=0.040570

0.010000

0.100000

1.000000

10.000000

100.000000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Failure Number

M
e
a
n

 V
a
lu

e
 S

u
c
c
e
s
s
iv

e

D
if

fe
re

n
c
e
s

Figure: 2 Weibull Mean Value Chart

IV. CONCLUSION

The given 30 inter failure times are plotted through the
estimated mean value function against the failure serial order.
The parameter estimation is carried out by Newton Raphson
Iterative method for the models. The graphs have shown out
of control signals i.e below the LCL. Hence we conclude that
our method of estimation and the control chart are giving a
+ve recommendation for their use in finding out preferable
control process or desirable out of control signal. By
observing the Mean value Control chart we identified that the
failure situation is detected at 10th and 25th point of table-4,
1st ,10th, 25th and 29th point of table-5 i.e ailure data has

fallen below ()Lm t . The successive difference of mean

values below ()Lm t indicates the failure process. In the

present scenario, It is significantly early detection of failure
through weibull using Mean Value Chart. The software
quality is determined by detecting failures at an early stage for

the corresponding ()m t , which is below ()Lm t . It indicates

that the failure process is detected at an early stage compared
with Xie et. a1 (2002) control chart [10], which detects the
failure at 23rd point for the inter failure data above the UCL.
Hence our proposed Mean Value Chart detects out of control
situation at an earlier than the situation in the time control
chart. The early detection of software failure will improve the
software Reliability. When the time between failures is less
than LCL, it is likely that there are assignable causes leading
to significant process deterioration and it should be
investigated. On the other hand, when the time between
failures has exceeded the UCL, there are probably reasons that
have lead to significant improvement.

REFERENCES

[1] Kimura, M., Yamada, S., Osaki, S., 1995. ”Statistical Software

reliability prediction and its applicability based on mean time between
failures”. Mathematical and Computer Modeling Volume 22, Issues

10-12, Pages 149-155.

[2] Koutras, M.V., Bersimis, S., Maravelakis,P.E., 2007. “Statistical
process control using shewart control charts with supplementary Runs

rules” Springer Science + Business media 9:207-224.

[3] MacGregor, J.F., Kourti, T., 1995. “Statistical process control of
multivariate processes”. Control Engineering Practice Volume 3, Issue

3, March 1995, Pages 403-414 .

[4] Musa, J.D., Iannino, A., Okumoto, k., 1987. “Software Reliability:
Measurement Prediction Application”. McGraw-Hill, New York.

[5] Ohba, M., 1984. “Software reliability analysis model”. IBM J. Res.

Develop. 28, 428-443.

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

[6] Pham. H., 1993. “Software reliability assessment: Imperfect debugging
and multiple failure types in software development”. EG&G-RAAM-

10737; Idaho National Engineering Laboratory.

[7] Pham. H., 2003. “Handbook Of Reliability Engineering”, Springer.

[8] Pham. H., 2006. “System software reliability”, Springer.

[9] Swapna S. Gokhale and Kishore S.Trivedi, 1998. “Log-Logistic

Software Reliability Growth Model”. The 3rd IEEE International
Symposium on High-Assurance Systems Engineering. IEEE Computer

Society.

[10] Xie, M., Goh. T.N., Ranjan.P., “Some effective control chart
procedures for reliability monitoring” -Reliability engineering and

System Safety 77 143 -150¸ 2002.

[11] Satya Prasad, R., “Half logistic distribution for software reliability
growth model”, Ph.D thesis, 2007.

Goel, A.L., Okumoto, K., 1979. Time-dependent errordetection rate model for

software reliability and other performance measures. IEEE Trans. Reliab. R-
28, 206-211.

AUTHOR PROFILE:

FIRST AUTHOR:

G. Krishna Mohan is working as a Reader in

the Department of Computer Science,

P.B.Siddhartha College, Vijayawada. He

obtained his M.C.A degree from Acharya

Nagarjuna University in 2000, M.Tech from

JNTU, Kakinada, M.Phil from Madurai

Kamaraj University and pursuing Ph.D at

Acharya Nagarjuna University. His research interests lies in

Data Mining and Software Engineering. He has published

several research papers in National and International Journals.

SECOND AUTHOR:

B. Srinivasa rao received the Master Degree in

Computer Science and Engineering from Dr

MGR Deemed University, Chennai, Tamil

Nadu, India. He is Currently working as

Associate Professor in PG Department of

Computer Applications, VRS & YRN

College, Chirala, Andhra Pradesh, India. His research interests

include software reliability, Cryptography and Computer

Networks. He has published several papers in National and

International Journals.

THIRD AUTHOR:

Dr. R. Satya Prasad received Ph.D. degree in

Computer Science in the faculty of

Engineering in 2007 from Acharya Nagarjuna

University, Andhra Pradesh. He received gold

medal from Acharya Nagarjuna University for

his outstanding performance in Masters

Degree. He is currently working as Associate

Professor and H.O.D, in the Department of Computer Science

& Engineering, Acharya Nagarjuna University. His current

research is focused on Software Engineering. He has published

several papers in National & International Journals.

