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Abstract—Control charts are widely used for process monitoring. Software reliability process can be monitored efficiently by using 

Statistical Process Control (SPC). It assists the software development team to identify failures and actions to be taken during software 

failure process and hence, assures better software reliability. If not many, few researchers proposed SPC based software reliability 

monitoring techniques to improve Software Reliability Process. In this paper we propose a control mechanism based on the 

cumulative quantity between observations of time domain failure data using mean value function of Weibull and Goel-Okumoto 

distribution, which are based on Non Homogenous Poisson Process (NHPP). The Maximum Likelihood Estimation (MLE) method is 

used to derive the point estimators of the distributions. 
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I. INTRODUCTION 

Software reliability assessment is important to evaluate and 

predict the reliability and performance of software system, 

since it is the main attribute of software. To identify and 

eliminate human errors in software development process and 

also to improve software reliability, the Statistical Process 

Control concepts and methods are the best choice. SPC 

concepts and methods are used to monitor the performance of 

a software process over time in order to verify that the process 

remains in the state of statistical control. It helps in finding 

assignable causes, long term improvements in the software 

process. Software quality and reliability can be achieved by 

eliminating the causes or improving the software process or its 

operating procedures [1]. 

The most popular technique for maintaining process control 

is control charting. The control chart is one of the seven tools 

for quality control. Software process control is used to secure 

the quality of the final product which will conform to 

predefined standards. In any process, regardless of how 

carefully it is maintained, a certain amount of natural 

variability will always exist. A process is said to be 

statistically “in-control” when it operates with only chance 

causes of variation. On the other hand, when assignable 

causes are present, then we say that the process is statistically 

“out-of-control.” 

The control charts can be classified into several categories, 

as per several distinct criteria. Depending on the number of 

quality characteristics under investigation, charts can be 

divided into univariate control charts and multivariate control 

charts. Furthermore, the quality characteristic of interest may 

be a continuous random variable or alternatively a discrete 

attribute. Control charts should be capable to create an alarm 

when a shift in the level of one or more parameters of the 

underlying distribution or a non-random behavior occurs. 

Normally, such a situation will be reflected in the control 

chart by points plotted outside the control limits or by the 

presence of specific patterns. The most common non-random 

patterns are cycles, trends, mixtures and stratification [2]. For 

a process to be in control the control chart should not have any 

trend or nonrandom pattern. 

SPC is a powerful tool to optimize the amount of 

information needed for use in making management decisions.  

Statistical techniques provide an understanding of the business 
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baselines, insights for process improvements, communication 

of value and results of processes, and active and visible 

involvement.  SPC provides real time analysis to establish 

controllable process baselines; learn, set, and dynamically 

improves process capabilities; and focus business areas which 

need improvement. The early detection of software failures 

will improve the software reliability. The selection of proper 

SPC charts is essential to effective statistical process control 

implementation and use. The SPC chart selection is based on 

data, situation and need [3]. Many factors influence the 

process, resulting in variability. The causes of process 

variability can be broadly classified into two categories, viz., 

assignable causes and chance causes. 

The control limits can then be utilized to monitor the failure 

times of components. After each failure, the time can be 

plotted on the chart. If the plotted point falls between the 

calculated control limits, it indicates that the process is in the 

state of statistical control and no action is warranted. If the 

point falls above the UCL, it indicates that the process average, 

or the failure occurrence rate, may have decreased which 

results in an increase in the time between failures. This is an 

important indication of possible process improvement. If this 

happens, the management should look for possible causes for 

this improvement and if the causes are discovered then action 

should be taken to maintain them. If the plotted point falls 

below the LCL, It indicates that the process average, or the 

failure occurrence rate, may have increased which results in a 

decrease in the failure time. This means that process may have 

deteriorated and thus actions should be taken to identify and 

the causes may be removed. It can be noted here that the 

parameter a, b should normally be estimated with the data 

from the failure process. Since a, b are the parameters in the 

proposed distributions, any traditional estimator can be used. 

The control limits for the chart are defined in such a 

manner that the process is considered to be out of control 

when the time to observe exactly one failure is less than LCL 

or greater than UCL. Our aim is to monitor the failure process 

and detect any change of the intensity parameter. When the 

process is normal, there is a chance for this to happen and it is 

commonly known as false alarm. The traditional false alarm 

probability is to set to be 0.27% although any other false 

alarm probability can be used. The actual acceptable false 

alarm probability should in fact depend on the actual product 

or process [9]. 

II. LITERATURE SURVEY 

This section presents the theory that underlies the proposed 

distributions and maximum likelihood estimation for complete 

data. If „t‟ is a continuous random variable with 

pdf: 1 2( ; , , , )kf t    . Where 1 2, , , k   are k unknown 

constant parameters which need to be estimated, and cdf: 

 F t . Where, The mathematical relationship between the 

pdf and cdf is given by:
  

( )
d F t

f t
dt

 . Let „a‟ denote the 

expected number of faults that would be detected given 

infinite testing time in case of finite failure NHPP models. 

Then, the mean value function of the finite failure NHPP 

models can be written as: ( ) ( )m t aF t . where, F(t) is a 

cumulative distribution function. The failure intensity function 

( )t  in case of the finite failure NHPP models is given by: 

( ) '( )t aF t   [8].  

A.  NHPP model 

The Non-Homogenous Poisson Process (NHPP) based 

software reliability growth models (SRGMs) are proved to be 

quite successful in practical software reliability engineering 

[4]. The main issue in the NHPP model is to determine an 

appropriate mean value function to denote the expected 

number of failures experienced up to a certain time point. 

Model parameters can be estimated by using Maximum 

Likelihood Estimate (MLE). Various NHPP SRGMs have 

been built upon various assumptions. Many of the SRGMs 

assume that each time a failure occurs, the fault that caused it 

can be immediately removed and no new faults are introduced. 

Which is usually called perfect debugging. Imperfect 

debugging models have proposed a relaxation of the above 

assumption [5,6]. 

Let   , 0N t t   be the cumulative number of software 

failures by time „t‟. m(t) is the mean value function, 

representing the expected number of software failures by time 

„t‟.  t  is the failure intensity function, which is 

proportional to the residual fault content. Thus 

  (1 )btm t a e   and  
( )

( ( ))
dm t

t b a m t
dt

    . 

where „a‟ denotes the initial number of faults contained in a 

program and „b‟ represents the fault detection rate. In software 

reliability, the initial number of faults and the fault detection 

rate are always unknown. The maximum likelihood technique 

can be used to evaluate the unknown parameters. In NHPP 

SRGM  t can be expressed in a more general way as 

       
( )dm t

t b t a t m t
dt

     
. where  a t  is the time-

dependent fault content function which includes the initial and 

introduced faults in the program and  b t  is the time-

dependent fault detection rate. A constant  a t  implies the 

perfect debugging assumption, i.e no new faults are 

introduced during the debugging process. A constant  b t  

implies the imperfect debugging assumption, i.e when the 

faults are removed, then there is a possibility to introduce new 

faults.  

B.  Goel-Okumoto distribution  

The Goel-Okumoto model is a simple NonHomogenous 
Poisson Process (NHPP) model with the mean value function 

   1 btm t a e   [12]. Where the parameter „a‟ is the 

number of initial faults in the software and the parameter „b‟ 
is the fault detection rate. The corresponding failure intensity 
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function is given by   btt abe  . The probability density 

function of a Goel-Okumoto model has the form: 

( ) btf t be . The corresponding cumulative distribution 

function is:   1 btF t e  .  

C. Weibull distribution 

The Weibull distribution is a generalization of exponential 
distribution, which is recovered for β = 1. Although the 
exponential distribution has been widely used for times-
between-event, Weibull distribution is more suitable as it is 
more flexible and is able to deal with different types of aging 
phenomenon in reliability. Hence in reliability monitoring of 
equipment failures, the Weibull distribution is a good 
alternative. The probability density function of a two-
parameter Weibull model has the form: 

   1
( )

bt
f t b bt e




 
 . Where b > 0 is a scale parameter 

and 0   is a shape parameter. The corresponding 

cumulative distribution function is:   ( )1 btF t e
  . The 

mean value function 
 

( ) 1 nbt
m t a e


  

  
. The failure 

intensity function is given as: 
1 ( )( ) . btt ab t e

     .  

D. MLE (Maximum Likelihood) Parameter Estimation 

The idea behind maximum likelihood parameter estimation 
is to determine the parameters that maximize the probability 
(likelihood) of the sample data. The method of maximum 
likelihood is considered to be more robust (with some 
exceptions) and yields estimators with good statistical 
properties. In other words, MLE methods are versatile and 
apply to many models and to different types of data. Although 
the methodology for maximum likelihood estimation is simple, 
the implementation is mathematically intense. Using today's 
computer power, however, mathematical complexity is not a 
big obstacle. If we conduct an experiment and obtain N 

independent observations, 1 2, , , Nt t t . The likelihood 

function [7] may be given by the following product:  

 1 2 1 2 1 2

1

, , , | , , , ( ; , , , )
N

N k i k

i

L t t t f t     


  

Likely hood function by using λ(t) is:

1

( )
n

i

i

L t


  

The logarithmic likelihood function is given by:

 

 

1

1

log log ( )

log ( ) ( )

n

i

i

n

i n

i

L t

t m t









 
  

 

 





 

The maximum likelihood estimators (MLE) of 

1 2, , , k   are obtained by maximizing L or  , where is 

ln L . By maximizing , which is much easier to work with 
than L, the maximum likelihood estimators (MLE) of 

1 2, , , k   are the simultaneous solutions of k equations 

such as:  
0

j

 




,  j=1,2,…,k 

The parameters „a‟ and „b‟ are estimated as follows. The 
parameter „b‟ is estimated by iterative Newton Raphson 

Method using 
1

( )

'( )

n
n n

n

g b
b b

g b
  

, which is substituted in 

finding „a‟. 

III. ILLUSTRATING THE MLE METHOD 

A.  Goel-Okumoto parameter estimation 

The likelihood function is given as, ( )

1

N
bt

i

L abe




 

Taking the natural logarithm on both sides, The Log 
Likelihood function is given as: 

( ) ( )

1

log log( ) [1 ]i n

n
bt bt

i

L abe a e
 



    . 

Taking the Partial derivative with respect to „a‟ and 

equating to „0‟. (i.e 
log

0
L

a





).                    

 
1 nbt

n
a

e



 
 

     

Taking the Partial derivative with respect to „b‟ and 

equating to„0‟.(i.e
log

( ) 0
L

g b
b


 


). 

 

  1

( ) 0
1

n

n

btn

i n bt
i

n e
g b t nt

b e






   



  

       
Taking the partial derivative again with respect to „b‟ and 

equating to „0‟. (i.e
2

2

log
'( ) 0

L
g b

b
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B. Weibull parameter estimation 

The likelihood function, assuming 2  (Rayleigh) is 

given as, 22 ( )

1

2 .
N

bt

i

L ab t e




 

Taking the natural logarithm on both sides, The Log 
Likelihood function is given as:      

22 ( )2 ( )

1

log log(2 ) [1 ]n

n
btbt

i

i

L ab t e a e




    . 

Taking the Partial derivative with respect to „a‟ and 

equating to „0‟. (i.e 
log

0
L
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Taking the Partial derivative with respect to „b‟ and 

equating to„0‟.(i.e
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Taking the partial derivative again with respect to „b‟ and 

equating to „0‟. (i.e
2

2

log
'( ) 0

L
g b
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C. Distribution of Time between failures 

Based on the inter failure data given in Table 1, we 
compute the software failures process through Mean Value 
Control chart. We used cumulative time between failures data 
for software reliability monitoring using Goel-Okumoto and 
Weibull distributions. The use of cumulative quality is a 
different and new approach, which is of particular advantage 
in reliability.  

„ a


‟ and „ b


‟ are Maximum Likely hood Estimates of 

parameters and the values can be computed using iterative 
method for the given cumulative time between failures data 
[10] shown in table 1. Using „a‟ and „b‟ values we can 

compute ( )m t . 

TABLE 1. TIME BETWEEN FAILURES OF A SOFTWARE 

Failure 

Number 

Time 

between 

failure(h) 

Failure 

Number 

Time 

between 

failure(h) 

1 30.02 16 15.53 

2 1.44 17 25.72 

3 22.47 18 2.79 

4 1.36 19 1.92 

5 3.43 20 4.13 

6 13.2 21 70.47 

7 5.15 22 17.07 

8 3.83 23 3.99 

9 21 24 176.06 

10 12.97 25 81.07 

11 0.47 26 2.27 

12 6.23 27 15.63 

13 3.39 28 120.78 

14 9.11 29 30.81 

15 2.18 30 34.19 

 
 
Assuming an acceptable probability of false alarm of 0.27%, 

the control limits can be obtained as [10]: 

 
 

1 0.99865
bt

UT e



     

 
 

1 0.5
bt

CT e



    

 
 

1 0.00135
bt

LT e



      

 

These limits are converted to ( )Um t , ( )Cm t and ( )Lm t  

form. They are used to find whether the software process is in 
control or not by placing the points in Mean value chart 
shown in figure 1 and figure 2. A point below the control limit 

( )Lm t  indicates an alarming signal. A point above the 

control limit ( )Um t indicates better quality. If the points are 

falling within the control limits, it indicates the software 
process is in stable condition [11]. The values of parameter 
estimates and the control limits are given in table 2 and 3 
respectively. 

TABLE 2. PARAMETER ESTIMATES 

model a b 

GO 31.698171 0.003962 

Weibull 30.051592 0.003416 
 

TABLE 3. CONTROL LIMITS. 

model )( Utm
 

)( Ctm
 

)( Ltm
 

GO 31.676760 21.132114 0.085469 

Weibull 30.011170 15.025870 0.040570 

TABLE 4. MEAN SUCCESSIVE DIFFERENCES OF GO 

FN m(t) SD 

1 3.554578  0.160101 

2 3.714687  2.383587 

3 6.098274  0.137569 

4 6.235844  0.343684 

5 6.579527  1.279946 

6 7.859432  0.481484 

7 8.340916  0.351758 

8 8.692674  1.836638 

9 10.529312  1.060330 

10 11.589642  0.037410 

11 11.627052  0.489356 

12 12.116408  0.261248 

13 12.377656  0.684916 

14 13.062573  0.160266 

15 13.222838  1.102518 

16 14.325356  1.683122 

17 16.008478  0.172479 

18 13.180956  0.117592 

19 16.298549  0.249935 

20 16.548483  3.690661 

21 20.239144  0.749363 

22 20.988508  0.167971 

23 21.156479  5.293999 

24 26.450479  1.441653 

25 27.892132  0.034077 

26 27.926209  0.226497 

27 28.152706  1.348363 

28 29.501069  0.252475 

29 29.753545  0.246358 

30 29.999903  

TABLE 5. MEAN SUCCESSIVE DIFFERENCES OF WEIBULL 

FN m(t) SD 

1 0.314371 0.030704 

2 0.345076 0.657725 

3 1.002801 0.050307 

4 1.053108 0.132025 

5 1.185134 0.575065 

6 1.760199 0.252180 

7 2.012380 0.197261 

8 2.209641 1.219663 
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9 3.429305 0.859242 

10 4.288547 0.032507 

11 4.321054 0.439360 

12 4.760415 0.245447 

13 5.005863 0.680255 

14 5.686118 0.166975 

15 5.853094 1.230688 

16 7.083782 2.161267 

17 9.245050 0.240957 

18 9.486008 0.166350 

19 9.652358 0.359124 

20 10.011482 6.120127 

21 16.131610 1.396357 

22 17.527968 0.317624 

23 17.845592 9.491850 

24 27.337443 1.649185 

25 28.986628 0.029822 

26 29.016451 0.186649 

27 29.203101 0.697874 

28 29.900976 0.058849 

29 29.959825 0.040168 

30 29.999994  

 
 
Figure 1 and 2 are obtained by placing the time between 

failures cumulative data shown in tables 3, 4 on y axis and 
failure number on x axis, and the values of control limits are 
placed on Mean Value chart. The Mean Value chart of Goel-
Okumoto shows that the 10

th
 and 25

th
 failure data has fallen 

below ( )Lm t . The Mean Value chart of weibull shows that 

the 1
st
 ,10

th
 and 25

th
 failure data has fallen below ( )Lm t . The 

successive differences of mean values below ( )Lm t indicates 

the failure process. In the present scenario, It is significantly 
early detection of failure through weibull using Mean Value 
Chart. The software quality is determined by detecting failures 
at an early stage. The Remaining Failure data shown in figure 
1 are in stable condition. No failure data fall outside 

the ( )Um t . It does not indicate any alarm signal. 
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Figure: 1 GO Failure Control Chart 
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Figure: 2 Weibull Mean Value Chart 

IV. CONCLUSION 

The given 30 inter failure times are plotted through the 
estimated mean value function against the failure serial order. 
The parameter estimation is carried out by Newton Raphson 
Iterative method for the models. The graphs have shown out 
of control signals i.e below the LCL. Hence we conclude that 
our method of estimation and the control chart are giving a 
+ve recommendation for their use in finding out preferable 
control process or desirable out of control signal. By 
observing the Mean value Control chart we identified that the 
failure situation is detected at 10th and 25th point of table-4, 
1st ,10th, 25th and 29th point of table-5 i.e ailure data has 

fallen below ( )Lm t . The successive difference of mean 

values below ( )Lm t indicates the failure process. In the 

present scenario, It is significantly early detection of failure 
through weibull using Mean Value Chart. The software 
quality is determined by detecting failures at an early stage for 

the corresponding ( )m t , which is below ( )Lm t . It indicates 

that the failure process is detected at an early stage compared 
with Xie et. a1 (2002) control chart [10], which detects the 
failure at 23rd point for the inter failure data above the UCL. 
Hence our proposed Mean Value Chart detects out of control 
situation at an earlier than the situation in the time control 
chart. The early detection of software failure will improve the 
software Reliability. When the time between failures is less 
than LCL, it is likely that there are assignable causes leading 
to significant process deterioration and it should be 
investigated. On the other hand, when the time between 
failures has exceeded the UCL, there are probably reasons that 
have lead to significant improvement. 
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