
 Volume 2, Issue 2, February 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Smart Environment for Component Reuse

 Suresh Chand Gupta

 CSE Department

 P.I.E.T Samalkha, Panipat

Prof Ashok Kumar
Department of Computer Science & Applications

K.U. Kuurukshetra

Abstract— The keyword based approach largely used in descriptive methods for component retrieval procedure is

not well accurate. In keyword-based procedure, a candidate asset is selected whenever the keywords that form its

depiction match all or most of the keywords of the query. Keyword search regain large number of listed

components, it is the responsibility of the user to manually find out the component that is most appropriate to be

adapted to reuse that components. To find out the best-fit reusable components is a tedious task for the user.

Although keyword based procedure is widely used for descriptive procedure, it yields results that are far too

formless. Here we propose a smart environment for the retrieval approach of components to make them reusable.

The class diagram contains effective information about the structural description and contents of a class, i.e.

class name, attributes, behaviour, relationships, generalization etc. If we search the repository by using this

information, the search result would be better and thus providing higher accuracy, as compared to keyword based

search procedure.

Keywords— MDL, UML Models, Search Environment

I. INTRODUCTION

Software reuse is the process of implementing or updating

software systems using existing software assets. Software

assets, or components, include all software products, from

requirements and proposals, to specifications and designs, to

user manuals and test suite. Anything that is produced from a

software development effort can potentially be reused. Even

libraries of Unified Modeling Language diagrams and source

codes do exist, one of the challenges that still remain is to

locate suitable designs and source codes, and get used to them

to meet the requirements of the software designer for the

development of new software. A traditional approach to

component retrieval is keyword-based; which produced result

in the retrieval of less relevant components. A more result

producing approach is retrieval based on MDL file format,

where the contents of MDL file of the diagrams are matched

to retrieve the components. The UML models that used for

modeling are stored as MDL file format. These MDL file

formats are generally very information rich and contains a

large number of important and valuable information about the

components. This available information can be structural as

well as behavioral in nature. The class diagram MDL file

format have valuable information about the structural

description and contents of a class, i.e. class name, attributes,

behavior, relationships, generalization, cardinality etc. These

attributes can be used for specification matching with the

contents of the repository. The Use case diagram file contains

valuable information about the requirements specification of

software. These include use cases and actors. If we search the

repository on the basis of attributes of MDL file descriptions,

the search result would be better and thus giving much higher

precision, as compared to keyword based searching procedure.

Hence the role of user to find the best suitable component

from the search results would be much easier. In this paper we

describe a tool named as a smart environment for retrieving

the related components, which assists the software designers

in the retrieval of the designs as well as source codes.

II. LITERATURE SURVEY

A. Existing Retrieval Techniques

In [27], a hybrid technique based on natural language

description and formal specifications using K-nn technique

has been discussed. It discusses the reuse and benefits of reuse

using formal methods. It also demonstrates the benefits of

using natural language along with formal methods, which is

supported by the tool demonstrated. It discusses a Reuse

WELL System which exploits the benefits of both formal

methods and natural language in the retrieval of software

components. Reuse WELL tool in this paper has just been

implemented for subset of the Z notation. It can further be

extended and implemented for every Z markup. Moreover

Reuse WELL tool can be implemented for other libraries also.

In [25, 26, 28], ant colony algorithms based technique that

generates rules to store and then identify the component for

possible reuse is discussed and demonstrated. This technique

helps users in organization and storage of components and

later can help in identifying most appropriate components. In

http://www.ijarcsse.com/

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

the first stage while searching it makes use of keywords, their

synonyms and their interrelationships. Then it makes use of

ant colony optimization; initial pheromone of one is assigned

to all domain representation terms of components. By

updating pheromone for participating terms iteratively and by

calculating the quality of each rule generated, it leads to

quality rules to represent and retrieve the reusable

components. In [30], design and implementation of a storage

and retrieval structure for software a component that is based

on formal specifications and on the refinement ordering

between specifications is discussed. It discusses retrieval

algorithm for exact and approximate retrieval, along with their

design and implementation.
B. Features for Characterizing Software-Retrieval Method

The features that are being used for characterizing Software-

Retrieval methods are as follows [19]:

Nature of Assets – This includes the nature of asset that is

stored in the library. Assets include source code, executable

code, requirements specification, design description, test data,

documentation, and proof.

Scope of Library – This includes the scope in which the

library is to be used. That is whether the library is to be used

within a project, across a program, across a product line,

across multiple product lines, worldwide.

Query representation – This includes the form of the query

submitted to the library. Queries can be submitted in various

forms as functional specification, signature specification,

keyword list, design pattern, behavioral sample.

Asset representation – This includes how the assets are

represented in the library. It dictates what form user queries

should take. Assets can be represented as functional

specification, signature specification, source code, executable

code, requirements specification, documentation, and set of

keywords.

Storage Structure – This includes how the assets are stored in

library. Storage structures can be flat structure, hypertext

links, refinement ordering, ordering by generosity.

Navigation Scheme – This includes how the assets are visited

or navigated. Various navigation schemes include Exhaustive

linear scan, navigation hypertexts links, and navigating

refinement relations.

Retrieval Goal – This includes, finding out assets that are

correct with respect to a given query. Various retrieval goals

include correctness, functional proximity, and structural

proximity.

Relevance Criterion – This includes under what conditions a

library asset is considered to be relevant for the submitted

query with respect to the predefined retrieval goal. Relevance

Criterion includes correctness, signature matching,

minimizing functional distance, minimizing structural

distance.

Matching Condition – This includes the condition that is

chosen to check between the submitted query and a candidate

library asset. Various factors for matching condition include

correctness formula, signature identity, signature refinement,

equality and subsumption of keywords, natural language

analysis, and pattern recognition.

C. Gaps in Existing Techniques

The major drawbacks of the traditional descriptive

classification schemes for software component retrieval are:

 Ambiguity problem in keyword based search procedure;

when different words mean different things to different

people..

 Both Precision and Recall are not high.

 These techniques are based on a proscribed vocabulary

that must be constructed manually for each and every

application domain.

 Both classification and retrieval require important human

effort because users must select appropriate terms for

each facet in the classification scheme from usually list of

terms in the controlled vocabulary.

This paper proposes an approach combining main advantages

of descriptive classification methods for component retrieval

in order to improve retrieval effectiveness and provide a

friendlier user interface through the use of queries in MDL

format.

III. EXPERIMENT

. The primary goal of this paper is to identify a retrieval

approach by using the MDL format. The UML models that are

used for modeling are stored as MDL file format. These MDL

file formats are practically very information rich and contains

lot of meaningful information about the components. This

available information can be structural as well as behavioral.

To successfully combine two paradigms software reuse and

UML, for Component Retrieval, an automated tool must be

designed, named as Component Retrieval Search Engine. The

Purpose of Component Retrieval Search Engine is to retrieve

best-fit or most reusable Component from the Repository as

intended by the (re) user. Moreover the search results to be

displayed in descending order of percentage match with the

input query. Hence the role of user to find the best-fit

component from the search results would be much easier.

A. Proposed System

The system developed is called as a smart environment for

component retrieval, which stores MDL files as well as source

codes in a Repository. The tool has the retrieving mechanism

for retrieving MDL files as well as source codes from the

Repository. The System Working is shown in Figure 1.The

main components of smart environment for retrieving the

components are the input file Reader, The Repository, and

retrieving mechanism. First the Repository Manager stores the

MDL Files as well as source codes in the Repository. Now

when a query is inserted for retrieval of a required component,

MDL file Reader reads the MDL file provided as input to the

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

system, and then stores the contents of the MDL file to be

used in the search operation in a temporary storage. Based on

the contents of MDL File the Search Engine is there to Search

for the desired results from the Repository and shows the

results back to the developer.

(1) MDL File Reader: Diagrams are the pictorial

representation of the system. Here we apply some principles

to reveal the details from the diagrams. The diagrams can be

easily modelled in some software like Rational Rose or

Visualiser. After developing the designs of software in UML,

store the file. By specifying and storing all the diagrams in

repository, we can read and extract the details. Taking the

example of class diagram, in a class diagram, there are

different classes, operators, attributes, relationships and

documentation or comments provided for explanation and

behaviour. There is relationship between the classes like

inheritance, association or any other dependency. Then they

are related with the Cardinality. These files must be read by

applying some algorithm, to extract all the details. But one

must keep trace of classes, operations, attributes and their

relations. The attributes of one class should not mix with other

class. To implement such algorithm, MDL file Reader is used

to extract the necessary information. The MDL file can be

read by treating it as a simple text file. Start reading the file

and whenever a match is found for object class, object

attributes and object operation store the string following next

in the temporary storage. Likewise all other attributes can be

stored by reading the file. The contents are stored in a

temporary storage and used for match when the search is to be

performed.

Figure 1. Reusability: component retrieval based on MDL format

2) The Repository Design:

The purpose of Repository is to store designs as well as source

codes. Designs are stored in MDL format and source codes

consist of programs in Java. The architecture of Repository is

prepared for storing both designs as well as source codes.

3) Retrieval Mechanism:

To extract diagrams or components from repository, to

facilitate software reuse a search engine is required to fetch

data as per requirements of the user. As there are many

diagrams in UML the search for each diagram is different and

the technique required is different. To search from the

repository, different search techniques are utilized to extract

relevant data..

MDL File – Class Diagram Search:

Search Technique – In this case, search is made on the MDL

file Class Diagram. Now the search is not defined on the

keywords or comments of a class. In this case the search is

performed on the structure of the whole software i.e. class

name, attributes name and operations name. The class diagram

of new software is modeled in Rational Rose and the file is

saved in MDL file format. Now for the search, this MDL file

would be the input to the query. The software would read the

class structure modeled and depending upon these structures

will search for structure in repository and would result back

with preexisting MDL files as well as source codes from the

repository. Moreover some weights are assigned to different

contents of a class as class name, class attributes and class

operations. These weights are computed and stored along with

the component path in a temporary storage .The search results

are displayed in the decreasing order of their weights i.e.

percentage match of the component. The component with

highest weight is displayed first and then next and so on. Thus

the best- fit component is that which is having highest

percentage match. Hence user can easily find the best-fit

component from the search results.

MDL File – Use Case Diagram Search:

Search Technique – In this case, search is made on the MDL

files Use Case Diagram. Now the search is not defined on the

keywords or comments of a Use Case Diagram. In this case

the search is performed on the functional requirements of the

whole software i.e. use cases and actors. The use case diagram

of new software is modelled in Rational Rose and the file is

saved in MDL file format. Now for the search, this MDL file

would be the input to the query. The software would read the

requirements specification modelled and depending upon

these requirements specification will search for requirement

specifications in repository and would result back with pre-

existing MDL files from the repository. Moreover some

weights are assigned to different contents of a use case

diagram as actors, which is a special kind of class and use

case. These weights are computed and stored along with the

component path in a temporary storage .The search results are

displayed in the decreasing order of their weights i.e.

Retrieval of
designs and

source code

Input Query MDL

File

MDL File Reader

Retrieval

Mechanism

Repositor

y

Repositor

y Manager

Develop

er

Develop

er

Re (user)

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

percentage match of the component. The component with

highest weight is displayed first and then next and so on. Thus

the best- fit component is which is having highest percentage

match. Hence user can easily find the best-fit component from

the search results.

Example Cases:

As per the data in the database, required is a search of a data

from the repository. The search technique and the search

query depend upon the data to be extracted and the data

present in the repository. The functionality of the retrieval

mechanism is to fetch the data from the repository to the user

in the desired output. Here, we are dealing with designs and

source codes. Designs itself cannot be reused as it is, as there

is no physical component that can be extracted, although

source codes can be reused as it is. The output form would be

the information about the components or the details provided

by the repository manager at the time of insertion of the

component in the repository. The form of output of the search

query is the file itself. Next level of data extraction is to be

provided by the developer as how to use the component. Also

the output can provide the information about the components,

that component could be found from the Repository and then

reuse principles are applied. Here the main motive at the

design and coding level is to know about the similar kinds of

components as per the search query, present in the Repository.

IV. CONCLUSIONS

Collectively software reusing with UML is an emerging trend

in the process of software development. Combining these

techniques can help the software development process by

finding existing components at the design time only, due to

which the total effort of software development can be

decreased.

 UML and software reuse working together can be used to

retrieve required components that can be best fitted for

the development of new software modules.

 The search can be made on class diagrams to search

according to structural description of the software.

 The search can be made on use case diagrams to search

according to requirements specification of the software.

REFERENCES

[1] Arun Sharma, Rajesh Kumar and P .S. Grover, “A Critical Survey of
reusability aspects for component-based systems”, Proceedings of

World Academy of Science, Engineering & Technology, Vol. 21, Jan

2007.
[2] Boehm, B “Managing software productivity and reuse”, IEEE

Computer 16(9), 111- 113, 1999.

[3] Burton, B. A., Aragon ,R. W. , Bailey ,S .A., Koehler ,K .D., and
Mayer ,L .A, “The Reusable software library”, IEEE Software 4, 4, 25-

33, 1987

[4] Clifton, C. and W. S. Li, “Classifying software components using
design Characteristics”, In proceedings of the 10th Knowledge-Based

Software Engineering Conference, KBSE‟95, IEEE Computer Society
press, Los Alamitos, CA PP 139-146, 1995

[5] Daniel Lucredio, Antonio Francisico do Prado, Eduardo Santana de

Almeida, “A Survey on Software Components Search and Retrieval”,

euromicro, pp.152-159, 30th EUROMICRO Conference

(EUROMICRO‟04), 2004

[6] Frakes,W.B and Pole,T, “ An Empirical study of representation
methods for reusable Software components”, IEEE Trans. Soft Engg

20, 8,617-630, 1994

[7] Fichman, R.G & Kemerer, C.E, “Object Technology and Reuse:
Lessons from early Adopters”, IEEE Software 14(10), 47-59, 1997

[8] Grady Booch, James Rumbaugh, Ivar Jacobson, The Unified Modeling

Language, User Guide (Pearson Education, 2005)
[9] Grady Booch, James Rumbaugh, Ivar Jacobson, The Unified Modeling

Language, Reference Manual (Pearson Education, 2005)

[10] Hafedh Mili, Fatma Mili and Ali Mili, “Reusing Software: Issues and
research Directions,” IEEE Transactions on Software Engineering, Vol.

21, No 6, 1995

[11] Henninger,S “An Evolutionary Approach to constructing effective
software reuse Repositories”, ACM Transactions on software

engineering and methodology 6(2), 111-140, 1997

[12] Isakowitz,T and R,J Kauffman , “Supporting Search for Reusable
Software Objects”, IEEE Transactions on Software Engineering 22, 6,

407-423, 1996

[13] Jiang Guo, Lqui, “A Survey of Software Reuse Repostories”, ecbs, p-
92, 7th IEEE International Conference and Workshop on the

Engineering of Computer Based Systems, 2000

[14] Jilani L L, R.Mili, M Frappier, J.Desharnais and A.Mili, “Retrieving
Software Components that minimize adaptation effort”, In Proceedings

of the 12th IEEE International Automated Software Engineering

Conference, ASE‟97, IEEE Computer Society Press, Los Alamitos, CA
pp 255-262, 1997a

[15] Jilani,L.L , R Mili and A Mili, “ Approximate Retrieval: An Academic

Exercise or a Practical Concern”, In Proceedings of the 8th Annual
workshop on software Reuse (WISR-8), 1997b

[16] Michel Ezran, Maurizio Morisio, Colin Tully, "A Survey of European

Reuse Experiences: Initial Results," euromicro, p. 875-881, 24 th.
EUROMICRO Conference Volume 2 (EUROMICRO‟98), 1998

[17] Mili.A, Yacoub.S, Addy.E, Hafedh.M, “Toward an Engineering
Discipline of Software Reuse”, IEEE software 16(5), 22-31, 1999

[18] Michail,A. & Notkin,D., “Assessing Software Libraries by Browsing

similar classes, functions and relationships” , In Proceedings of 21st

International Conference on Software Engineering (ICSE‟99), ACM

Press, Los Angeles, CA, pp. 463-472, 1999

[19] Mili A, Mili R and Mittermeir R.T, “A Survey of Software Reuse
Libraries,” Annals of Software Engineering Vol. 5, 349-414, 1998

[20] Mili R, Mili A and Mittermeir R.T, “Storing and Retrieving Software

Components: A Refinement Based System”, In Proceedings of 16th
International Conference on Software Engineering, IEEE, pp.91-100,

May 1994

[21] Mili and Edward Addy, Reuse Based Software Engineering (A Wiley-
Interscience Publication, John Wiley and Sons, Inc.2002)

[22] Peter Eisinga and Jos Trienckens, Software Components for the

Industry, From testing of applications to evaluation of components.
[23] Prieto-Diaz, “Implementing Faceted Classification for Software Reuse”,

Communication of the ACM 34, 5, 88-97, 1991

[24] Prieto-Diaz, R. and Freeman.,P, “ Classifying Software for
Reusability” ,IEEE Software.4, 1, 6-16, 1987

[25] Rajesh K Bhatia, Navneet Kaur, “Information Retrieval from a

composite based Repository using Genetics Algorithms” „IICAI 2005,
page 667-675

[26] Rajesh K Bhatia, Mayank Dave, R.C Joshi, “Retrieval of most relevant

reusable Component using genetic algorithms”, Software Engineering
Research and Practice 2006, 151-155

[27] Rajesh K Bhatia, Mayank Dave, R.C Joshi, “A Hybrid Technique for

Searching a Reusable Component from Software Libraries”,
DESIDOC Bulletin of Information Technology, Vol.27, No.5,

September 2007, pp. 27-34

[28] Rajesh K Bhatia, Mayank Dave, R.C Joshi, “Ant Colony Based Rule
Generation for Reusable Software Component Retrieval”, Proceedings

of the 1st Conference on India Software Engineering Conference, pp

129-130, Feb 19-22, 2008, Hyderabad, India

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

[29] Rajiv D. Banker, Robert J Kauffman and Dani Zweig, “Repository
Evaluation of Software reuse”, IEEE Transactions on Software

Engineering, Vol. 19, No 4, April 1993

[30] Rym Mili, Ali Mili and R.T.Mittermeir, “Storing and Retrieving

Software Components: A Refinement Based System”, IEEE

Transactions on Software Engineering, Vol.23, No 7, July 1997

[31] S. Araban, “A Two level Matching Mechanism for Object-Oriented
Class libraries”, Ada-Europe 1998: Uppsala, Sweden, pp 188-200, no.1,

Jan1993

