
 Volume 2, Issue 2, February 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Studies on Performance Aspects of Scheduling

Algorithms on Multicore Platforms

N. Ramasubramanian, Srinivas V.V., Chaitanya V.
Department of Computer Science and Engineering

National Institute of Technology - Tiruchirappalli

Abstract— The theory of scheduling has expanded rapidly during the past years. As multi-core architectures begin to

emerge, operating system issues are to be considered for best use of multi-core processes. Due to the architectural

differences in the state of art multi-core processors such as shared caches, memory controllers etc., it becomes the

responsibility of the operating system to make use of intelligent scheduling mechanisms instead of simply scheduling

tasks. In this paper, we try to explore the rapidly expanding area of scheduling by classifying the multi-core

scheduling into traditional shortest job scheduling for multi-core, tree based threaded scheduling and block level

scheduling. We have conducted simulation of the traditional shortest job first for multi-core processors the details of

which are discussed below. Tree based scheduling is achieved by constructing a binary search tree (BST) data

structure; similarly we have demonstrated block scheduling which form a part of software scheduling for reducing

the processes execution time. Research by, [13] shows that applications do not make use of the entire processing

power of multi-core processors. There has been considerable progress in the design of thread schedulers. We

demonstrate a mechanism of handling various cores as compared to the traditional mechanism of handling a single

processor core. Results show improved values of execution time as compared to traditional scheduler.

Keywords— Thread scheduling, multi-core, kernel, BST-tree, block scheduling

I. INTRODUCTION

Single-threaded processor performance is becoming

power limited, so processor architects are increasingly

turning to multi-core designs to improve processor

performance. A multi-core processor is an integrated

circuit composing of two or more individual

processors [2]. The performance gained using a multi-

core processor depends on the proximity of multiple-

cores on same die, which in-turn allows the cache

coherence circuitry to operate at a much higher rate

[3]. The coupling between the cores in a multi-core

environment can be considered as either loose or tight.

Combining CPU's on same die improves the

performance of snooping cache. As a result of this

there is little degradation of signals.

II. NEED FOR SCHEDULER

Multi-core is the latest technology which has

grabbed the market of processors [4]. A number of

applications do not in reality exploit the power of the

processing cores. Like every multitasking operating

system, linux achieves simultaneous execution of

multiple processes by rapidly cycling through the

process that are ready to run [5]. Determining when to

switch and which process should be allowed to run is

called scheduling [6]. An ideal scheduler should

protect lower priority process from starvation. Some

of the issues related to schedulers that needs to be

addressed are:

 Persistent starvation - This is the scenario

where two tasks share a CPU yet one task

completely starves out execution when

compared to the other task.

 Initial affinity problem - A task that is

assigned affinity to a particular CPU might

never have run on that particular CPU. When

applications are run at a certain minimal

frequency, in rare occasions they tend to run

on a single CPU, even when the other CPU's

are idle [10].

Schedulers must be crafted carefully so that the

process appears to be running continuously [1], [11].

III. EXISTING METHODOLOGY

Process is program in execution holding a specific

address space. A process consists of multiple-threads

of control. The other way of looking at a process is, it

is a way to group related resources together [10]. Here

resources refer to open file descriptors, child processes,

pending alarms, signal handlers and accounting

information. Scheduling in traditional uni-processor

system consisted of processes having a single thread

of control running on top of the kernel [7]; see Fig. 1,

whereas scheduling in multi-processor system consists

of a single process having multiple threads of control

http://www.ijarcsse.com/

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

running on top of multiple cores. Threads have a

program counter that keeps track of the next

instruction to execute. When multiple threads are

running a few fields are unique for each and every

thread [8]. Fig. 2.

 Process

Fig. 1. Single thread of execution in uni-core environment vs Multi-

threaded execution in multi-core environment

Fig. 2. Description of fields in process and thread table.

IV. KERNEL LEVEL SCHEDULING MECHANISM

Generally a kernel process has a higher priority

compared to a user process [9]. Under special

circumstances where the user process requires higher

priority than the kernel process, the nice command in

linux can be used to modify the scheduling priority of

the process. The scheduler maintains 16 queues of

runnable process. Not all of them are used at a given

instant of time. Fig. 3 shows the queue and processes

that are in place at the instant kernel begin to run. The

array rdy_head has one entry for each queue with the

entry pointing to the process at the head of the queue.

Similarly rdy_tail is an array whose entries point to

the last process on the queue. Based on the priority

level of the task, the process fall into one of the 16

queues. The scheduling is done in round-robin fashion.

If the running process exhausts the quantum, it is

moved to the tail of the queue and given a new

quantum. If a process is blocked and after some

quantum of time it is awakened, it is moved to the

head of the queue, if the process has remaining time

quantum.

Given the queue structure, the scheduling

mechanism is simple. The first step is to enqueue the

process along with a pointer to the process table entry.

Once enqueue is complete, it calls the function sched

which determines one among the 16 queues where the

process has to be inserted. If the queue was previously

empty, then the rdy_head and rdy_tail are made to

point to the same location when the process is added.

If a process is added to the head of the queue then

p_nextready gets the current value of rdy_head and

the rdy_head is pointed to the new process.

A process that is running is blocked by dequeue

operation. The process to be de-queued is likely to be

at the head of the queue. In case, when a signal is sent

to a process that is currently not in execution, then the

de-queue procedure has to traverse the array to find

the process that is not running. The likely hood of

finding the victim is at the head of the queue. Once the

victim process is removed, the pointers are adjusted

accordingly.

RDY_HEAD

RDY_TAIL

Fig. 3. Queuing system

Kernel of uni-core processor

Kernel of multi-core processor

Per process items

Address space

Global variables

Open files

Child process

Pending alarms

Signals and handlers

Accounting information

Per thread items

Program counter

Registers

Stack

State

Idle Q Idle Q Idle Q

User Q Init
User Q

Task Q

Task Q

 pm

fs

disk

tty

system

rs

log

clock

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

One important consideration to be noted is that, the

kernel processes maintains a common stack. Hence

the integrity of the stack has to be checked

periodically. At the beginning of the de-queue, a test is

performed to verify whether the process operates in

kernel space. If the process operates at the kernel stack,

a check is made to see that the distinctive pattern at

the end of the stack is not overwritten.

During the scheduling process described above, the

process table is updated with the following entries,

time_quantum_left, priority,

maximum_allowed_priority. Every time a process is

scheduled, a check on the time_quantum_left is done.

A. Working of nice

Nice is a UNIX system call which assigns

scheduling priority to processes. A positive nice value

refers to process having lower priority and a negative

value denotes higher priority process. Generally task

drivers and servers are given large quanta so that they

run before they get blocked. But if they run longer

than the given quanta they may get pre-empted.

.

V. SCOPE FOR IMPROVEMENT

When tasks are created they are placed on a given

CPU's run queue. Processes are either short lived or

long lived. Traditional linux scheduler provides the

functionality of scheduling by balancing the workload

among the CPU's [12] in round robin fashion. The

scheduler does not take the process execution time

into consideration. Using traditional SJF for multicore,

BST and Block scheduling mechanism, we propose

methods for scheduling by taking the execution time

of each process and the load of each processor core.

VI. SIMULATED SJF FOR MULTI-CORE

In the shortest job for multi-core we have come up

with a model where the processes arrive at a Poisson

rate and the execution time of the processes are

considered to be random.

Fig. 4. Average turn around time

Based on the number of processors assigned to the

simulation environment, the processes are transmitted

to the processors using the shortest job first algorithm

from a M/M/1 queue. The execution of the processes

by the processors is assumed to be threaded and the

results obtained as a result of execution of the

simulated traditional SJF for multi-core scheduling are

given below.

Fig. 5. Average waiting time

The results show that the as the number of jobs

increase, the average turnaround time decreases for

increased number of cores. Similarly the average

waiting time for the processes also decreases as the

number of cores increase.

VII. BST SCHEDULER

The main idea behind the BST scheduler is to

maintain balance in providing processor time to tasks

and reducing the latency for getting CPU access [14].

When the time for the tasks is out of balance then the

out of balance tasks should be given excess time to

execute. The scheduler is named as BST scheduler due

to the following reasons; refer [15] for details related

to completely fair scheduler.

 Binary search tree is used as data structure for

the run queues instead of the traditional arrays.

 Fast interactive response

 Fair to all tasks

 Improved load balancing for multi-core.

A. Internal Design

A Binary Search Tree has the self-balancing

property. Operations pertaining to Binary Search Tree

occur in O(log n) time. This means that the insertion

and deletion of tasks can be done in fixed time

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

efficiently. BST's design uses time-ordered BST-tree

to build a time-line of future task execution. It does

not make use of the traditional array switch

mechanism. BST makes use of the concept of sleeper

fairness, where tasks that are not runnable receive a

comparable share of processor time at a later point of

time when they need it.

Fig. 6. Flow diagram of traditional scheduler

VIII. INTERNAL DATA-STRUCTURE OF BST

SCHEDULER

The internal of BST scheduler makes use of the

following data-structure.

 min_vruntime - It is a monolithic increasing

variable taking the smallest virtual run time

among all the tasks in the run queue.

 load - The total number of running tasks in the

run queue is accounted through this variable.

 se_vruntime - holds the difference between the

min_vruntime and the executed time.

Fig. 7. BST Datastructure

IX. WORKING OF BST SCHEDULER

A task that is to be executed is scheduled based on

the min_vruntime value i.e. the left most element of

the BST-tree. Now the se_vruntime is computed. Once

the value becomes greater than the threshold, some

other task is made as the leftmost task. With tasks

stored in time-ordered tree, tasks which are in grave

need of processor are allocated processor first. The

flow diagram shown in Fig. 6 describes the entire

process involved in scheduling of tasks using BST tree.

Initially the process/thread is created and the time

quantum is computed and placed in the BST tree. The

initial step involves, checking whether the process is

blocked. If the process is blocked due to some

operation, then the process is moved into the ready

queue and the process id associated with the left most

leaf of BST tree is relocated to some other leaf. The

process-id of the next process which is going to make

use of the processor is associated with the left most

leaf of the BST tree. If the process is not blocked then

the process continues until the time quantum expires.

Process creation

Memory allocated to process

Apply time quantum and

priority to process

Select one of the 16 queues

Decide where to insert in the

queue.

Is process

blocked

Select the process from the

head of high priority queue.

Pick the process to assign to a

particular core.

T_quatum

expired?

Continue to run on core till

time quantum expires.

Remove from

queue

27

19 34

7 25 31 65

2 98

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

Fig. 8. Flow diagram of BST scheduler

Fig. 9.Output obtained from traditional scheduler

Fig. 10.Output obtained from BST scheduler

X. BLOCK SCHEDULER

Block scheduling [16] is an emerging state art

scheduling for process on multicore where special

assumptions about process are made with respect to

multiple cores. The block scheduling attempts to do an

equitable distribution of workload among the multiple

cores of processor. It tries to avoid forward

dependency. Whenever process Pj's input depends on

process Pi's output then process Pj it is said to be

forward dependent on process Pi. Block scheduling

tries to avoid this by rearranging processes so that the

cores never remain idle. It also tries to minimize the

amount of context switching. In this paper, we have

implemented block scheduling using simulation.

Consider the following example for forward

dependency:

Thread creation

Memory allocation

Ready state

Vruntime calculation

Insert into BST tree

Is thread

blocked

Remove left most node from

BST tree.

Load balance iterator

 T_quatum

expired?

Continue to run on core till

time quantum expires.

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

P1: x=a+b P2: y=x+c

P3: z=d+e P4: s=z+v

P5: t=h+i

Fig. 11. Forward dependency

In this figure process P2 will not execute unless

process P1 is completed. Similarly process P4 will not

execute unless P3 is executed.

Fig. 12. Influence of scheduler on execution time

The time for execution of these processes using a

traditional scheduling would be much slower than

using block scheduling. Using block scheduling, the

process that are independent of each other are grouped

together as blocks and the remaining process that do

not form the block comes separately once the block

gets executed. Hence by rearranging the processes the

dependency conflict that arises in case of traditional

schedulers is reduced on a multi-core machine.

XI. RESULTS OF BLOCK SCHEDULING

The graph is obtained by running block scheduling

on single core, dual core and quad core processors.

This is done by running the block scheduling program

using task-set command of linux shell. The process are

given affinity to one particular core in case of

simulating on a uni-core processor, similarly the

affinity is set to 2 for dual core model and the affinity

is set to 4 in case of quad core model. The results

obtained are shown in the graph.

Fig. 13. Execution time for 1, 2 and 4 core processors using block
scheduling.

XII. CONCLUSION

In this paper, we have demonstrated the traditional

scheduler, BST scheduler and block scheduler to

minimize the execution time of the tasks. Based on the

requirements of the tasks, selection of appropriate

scheduler would improve upon the efficiency of

execution of the multiple cores of the processor. In

this paper, an attempt to optimize multicore-load

balancing to achieve better response time is also made.

ACKNOWLEDGEMENT

The authors in this paper would like to recognize

National Institute of Technology, Tiruchirappalli for

for providing facilities for our research.

REFERENCES

[1] Saez, J.C. and Prieto, M. and Fedorova, A. and Blagodurov, S.:

A comprehensive scheduler for asymmetric multicore systems,
In: Proceedings of the 5th European conference on Computer

systems, pp. 139-152, 2010.

[2] Shelepov, D. and Saez Alcaide, J.C. and Jeffery, S. and

Fedorova, A. and Perez, N. and Huang, Z.F. and Blagodurov,

S. and Kumar, V.: HASS: a scheduler for heterogeneous

multicore systems, In: ACM SIGOPS Operating Systems
Review, vol. 43, no. 2, pp. 66-75, 2009.

[3] Fedorova, A. and Blagodurov, S. and Zhuravlev, S.: Managing

contention for shared resources on multicore processors, In:
Communications of the ACM, vol. 53, no. 2, pp. 49-57, 2010.

[4] Kodaka, T. and Sasaki, S. and Tokuyoshi, T. and Ohyama, R.

and Nonogaki, N. and Kitayama, K. and Mori, T. and Ueda, Y.
and Arakida, H. and Okuda, Y. : Design and implementation

of scalable, transparent threads for multi-core media

processor, In: Proceedings of the Conference on Design,
Automation and Test in Europe, pp. 1035-1039, 2009.

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

[5] Jensen, M.G. and Kinter, R.C.: Multithreading instruction

scheduler employing thread group priorities, In: Google

patents US Patent 7,660,969, 2010.

[6] Kazempour, V. and Kamali, A. and Fedorova, A.: AASH: an

asymmetry-aware scheduler for hypervisors, In: ACM
SIGPLAN Notices, vol. 45, no. 7, pp. 85-96, 2010.

[7] Nesbit, K.J. and Moreto, M. and Cazorla, F.J. and Ramirez, A.

and Valero, M. and Smith, J.E. : Multicore resource
management, In: IEEE Micro, vol. 28, no. 3, pp. 6-16, 2008.

[8] Bower, F.A. and Sorin, D.J. and Cox, L.P.: The impact of

dynamically heterogeneous multicore processors on thread
scheduling, In: IEEE Micro, vol. 28, no. 3, pp. 17-25, 2008.

[9] Song, F. and Moore, S. and Dongarra, J.: Analytical modeling

for affinity based thread scheduling on multicore platforms, In:
University of Tennessee, Computer Science Tech. Rep. UT-

CS-08-626, 2008.

[10] Guo, Y. and Zhao, J. and Cave, V. and Sarkar, V.: SLAW: a
scalable locality-aware adaptive work-stealing scheduler for

multi-core systems, In: ACM SIGPLAN Notices, vol. 45, no. 5,

pp. 341-342, 2010.
[11] Kato, S. and Rajkumar, R. and Ishikawa, Y.: A Loadable Real-

Time Scheduler Framework for Multicore Platforms, In: ,

2010.
[12] Wang, B.: Task Parallel Scheduling over Multi-core System, In:

Journal of Cloud Computing, pp. 423-434, 2009, Springer.

[13] Srinivas V.V., Ramasubramaniam, N.: Understanding the
performance of multi-core architecture, In: Accepted in

International Conference in Communication, Network and

Computing (CNC) (2011).

[14] Hennessy, J.L., Patterson, D.A.: Computer Architecture: A

Quantitative Approach. In: 4th edition, Elsevier Inc., (2007).
[15] Completely Fair Scheduler,

http://www.ibm.com/developerworks/linux/library/l-

completely-fair-scheduler/
[16] Irmsher, K., Block scheduling, In: Eugene, OR: ERIC

Clearinghouse on Educational Management, College of

Education, University of Oregon, 1996.

