
 Volume 2, Issue 2, February 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Comparison of FP-Tree and B-Tree in Data Mining

Pallavi Sharma*, Lokesk Kumar Joshi

Department of Computer Science and Engineering,

Arya College of Engineering & Technology,

Jaipur ,Rajasthan, INDIA

Abstract: Association rule mining, one of the most important and well researched techniques of data mining, was

first introduced in. It aims to extract interesting correlations, frequent patterns, associations or casual structures

among sets of items in the transaction databases or other data repositories.. However, no method has been shown

to be able to handle data streams, as no method is scalable enough to manage the high rate which stream data

arrive at. More recently, they have received attention from the data mining community and methods have been

defined to automatically extract and maintain gradual rules from numerical databases. In this paper, we thus

propose an original approach to mine data streams for Association rule mining. Our method is based on B-Trees

and FP growth in order to speed up the process. B-Trees are used to store already-known for order to maintain

the knowledge over time and provide a fast way to discard non relevant data while FP growth.

1. Introduction of FP growth

The problem of mining association rules from a data

stream has been addressed by many authors but there

are several issues (as highlighted in previous

sections) that remain to be addressed. In the

following section existing literature based on the

problems in data stream mining that is addressed.

The work in this domain can be effectively

classified into three different domains namely, Exact

methods for Frequent Itemset Mining, Approximate

Methods and Memory Management techniques

adopted for data stream mining[1].

2. Exact approaches to Frequent Itemset

Mining
Fequent-pattern mining plays an essential

role in mining associations[1] if any length k pattern

is not frequent in the database, its length (k + 1)

super-pattern can never be frequent. The essential

idea is to iteratively generate the set of candidate

patterns of length (k+1) from the set of frequent-

patterns of length k (for k ≥ 1),and check their

corresponding occurrence frequencies in the

database.

The Apriori heuristic achieves good

performance gained by (possibly significantly)

reducing the size of candidate sets. However, in

situations with a large number of frequent patterns,

long patterns, or quite low minimum support

thresholds, an Apriori-like algorithm may suffer from

the following two nontrivial costs:– It is costly to

handle a huge number of candidate sets. For example,

if there are 104 frequent 1-itemsets, the Apriori

algorithm will need to generate more than 107

length-2 candidates and accumulate and test their

occurrence frequencies. Moreover, to discover a

frequent pattern of size 100, such as {a1, . . . , a100},

it must generate 2100 − 2 ≈ 1030 candidates in total.

This is the inherent cost of candidate

generation, no matter what implementation technique

is applied.– It is tedious to repeatedly scan the

database and check a large set of candidates by

pattern matching, which is especially true for mining

long patterns.Can one develop a method that may

avoid candidate generation-and-test and utilize some

novel data structures to reduce the cost in frequent-

pattern mining? This is the motivation of this

study[5].

 In this work, we develop and integrate the

following three techniques in order to solve this

problem.First, a novel, compact data structure, called

frequent-pattern tree, or FP-tree in short,is

constructed, which is an extended prefix-tree

structure storing crucial, quantitative information

about frequent patterns. To ensure that the tree

structure is compact and informative, only frequent

length-1 items will have nodes in the tree, and the

tree nodes are arranged in such a way that more

frequently occurring nodes will have better chances

of node sharing than less frequently occurring ones.

Subsequent frequent-pattern mining will

only need to work on the FP-tree instead of the whole

data set. Second, an FP-tree-based pattern-fragment

growth mining method is developed, which starts

from a frequent length-1 pattern (as an initial suffix

http://www.ijarcsse.com/

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

pattern), examines only its conditional-pattern base (a

“sub-database” which consists of the set of frequent

items co-occurring with the suffix pattern), constructs

its (conditional) FP-tree, and performs mining

recursively with such a tree[5][6]. The pattern growth

is achieved via concatenation of the suffix pattern

with the new ones generated from a conditional FP-

tree.

3 PROPOSED METHOD

3.1 Introduction

The previous chapters have described the

fundamental background behind closed itemset

mining, work objectives, overall architecture, and

experimental design. This chapter will focus on the

experimental findings. Both B treee and FP were

tested on synthetic datasets and compared against

predefined performance metrics such as Accuracy,

computational performance, and Memory

consumption. Supposed our Database is ginven in

this format.

Transactions SALARY CAR

T1 2000 2

T2 3000 3

T3 3500 4

T4 2500 4

T5 1000 1

T6 4000 3

Table 1.(example)

3.2 Findings from Experiment 1

This experiment was mainly designed for comparing

Data structure using Btree and FP Tree with respect

to performance. We first varied the minimum support

threshold while keeping the delta parameter constant.

We recorded the accuracy, performance and memory

consumption for Data structure and then repeated the

procedure for FP tree. For this experiment, we have

used dense datasets generated using the IBM data

generator (IBM). The Recall and Precision were

calculated by comparing Data structure using FP Tree

and FP tree results against the Apriority

implementation

The Apriority implementation was run against data

batched across a fixed number of frames and

presented as a single unit fixed size dataset to the

Apriori algorithm. It should be stressed that Apriori

was only used for benchmarking purposes for the

Precision and Recall values. As mentioned earlier in

the thesis Apriori cannot be used in an actual data

stream environment.

In this section, we firstly give an overview of our

approach focusing on the requirements needed in a

data stream mining scenario. Following, we explain

in detail the gradual rule mining algorithms used in

our approach. Finally, provide the complexity of the

most costly algorithm.

Transactions SALARY CAR B-TREE

T1 0.4 0.4 0.4

T2 0.6 0.6 0.6

T3 0.7 0.8 0.75

T4 0.5 0.8 0.65

T5 0.2 0.2 0.2

T6 0.8 0.6 0.7

Table 2: Normalized Database (min Salary=0, max

Salary=5,000,min Cars=0, max Cars=5), and b tree

value.

3.3 Basic Idea

We consider databases such as described in Table 2

where attribute values have been normalized in [0, 1],

as shown by Table 2. For this purpose, we consider a

minimum and maximum value for every attribute1.

In order to have a global idea of each tuple for

ordering them, we compute a summary using an

BTree. Note that it is very easy to manage both

increasing and decreasing gradualness. Indeed, as

weights give importance to small or large values, it is

not the same to mine a gradual itemset like {(Salary,

+)(Cars, +)} or {(Salary, +)(Cars,−)}. For the former

case, we have to compute the Btree value as B

tree(asalary, acars), whereas, for the latter one, we

have to compute the Btree value as Btree(asalary,

(1−acars)).

For instance, the last column of the Table 2 reports

the value computed by giving the same weight to

every attribute value. Here shows the process for

mining the gradual itemset {(Salary, +)(Cars, +)}.

Example 1 Consider each attribute of the normalized

database of Table 2 as the data coming from the data

stream, and suppose that the gradual itemset to mine

is GI: {(Salary, +)(Cars, +)}. At the beginning the

corresponding B-Tree for GI is empty. At time ts1,

the tuple T1 arrives andB tree(T1) is computed. As

the B-Tree is empty, T1 is inserted in the B-Tree root

node. At time Ts2, the tuple T2 arrives and Btree(t2)

is computed. As Btree(t1) <=Btree(T2), we have to

check that T1.Salary ,= T2.Salary and t1.Cars

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

<=T2.Cars hold. As both conditions are fulfilled t2 is

inserted in the B-Tree (as it is shown in Figure

2.(b)).This process is repeated at time Ts3 with tuple

T3 checking that T3 attributes

 Fig 2(b) BTree insertion Example

are larger thanT2 attributes (Figure 2.). Then, at time

Ts4, the tuple T4 arrives and the tree(T4) is

computed. As Btree(T2) <= (T4) <= Btree(T3), we

have to check that T2.Salary <=T4.Salary

<=T3.Salary and T2.Cars <= T4.Cars <= T3.Cars

hold. As T2.Salary = 0.6 and T4.Salary = 0.5 the first

condition does not hold and tuple T4 cannot be

inserted in the B-Tree. After that, tuple T5 is inserted

at time Ts5 because Btree(T5) <=Btree(T1) and

T5.Salary <=T1.Salary and T5.Cars <= T1.Cars hold,

this is depicted in Figure 2(b). Finally, at time Ts6

tuple t6 is discarded in a similar way as T4.This is the

key idea.

3.3.1 Algorithm Definition

In this section, we provide the algorithms

and all the details of our proposal.We assume that

tuples coming from the stream are already

normalized.Algorithm 1 is in charge of initializing

the gradual itemsets and B-Trees lists (lines 2-3).

Basically, such initialization consists in creating all

the possible gradual itemsets taking into account the

number of attributes of tuples, and creating for each

one an empty B-Tree. Following, we have to

compute when the first pruning process will be

executed . As we are interested in maintaining in

memory all tuples belonging to a certain period of

time we have to prune the B-Trees for the first time

when we have in memory tuples of two window

frames. In the main loop of Algorithm 1, we process

the data.

Algorithm 1: Data Structure using Btree

Data: s: Stream, q: Quantifier, w: Window

Step 1:- Begin

Step 2 :- g = Gradual itemset list;

Step3:- b = B-Tree list;

Step 4 :- InitializeGradualRule(g);

Step 5:- InitializeBTree(b);

Step 6 :- np = now() + 2w;

Step 7 :- while (!s.empty()) do

Step 8 :- GradualRuleProcessing(g,b,s,q);

Step 9 :- if (now() <=np) then

Step 10:- BTreePruning(b,w);

Step 11:- np = now() + w;

The most costly algorithm is the Algorithm 2. The

complexity of this algorithm is related to the number

of gradual itemsets (s) and to the number of tuples

that we have to process in a window frame (n).B-

Tree operations.

Algorithm 2:

 Data: itemset list, b: B-Tree list, s: Stream,

q:Quantifier

Step 1:- begin

Step 2 :-while (!s.empty()) do

Step 3 :- a=read(s);

Step 4:- for i (1 to g.Size do

Step 5:- ReverseValues(g.get(i), a);

Step 6:- o = Compute Btree(a, q);

Step 7:- prev = PreviousNodeSearch(o, b.get(i));

Step 8:- susbseq = SubsequentNodeSearch(o,

b.get(i));

Step 9:- if (checkRule(g.get(i), b.get(i), a, prev,

subseq)) then

Step 10:- b.get(i).addNode(o, a, timestamp);

Step 11:- UpdateSupport(g.get(i));

Step 12:- end

Used in this algorithm (search and insertion)

have a complexity equal to O(log (n)). In the worst

scenario, for each new tuple, we have to execute two

B-Tree operations (one search and one insertion) for

each gradual itemset to mine. Therefore, the

complexity of this algorithm is equal to O(2s log (n)).

As Algorithm 2 has a sub-linear complexity and the

tilted-time window technique allows us to keep n as

small as possible, we argue that it is affordable for

most of real time scenarios.

4. Results Analysis and Discussion:

In this section, we present a complete analysis of the

experiments carried out in this work, as well as, a

short discussion about why the results obtained show

that our approach is suitable for the stream mining

scenario. The experiments were performed using a

Matlab and a windows Operating system.

 Graph 4(a)(CPU time to generate a tree)

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

All the Graphs presented in this section were

calculated in the same way. After processing each

new tuple the following statistics were computed: the

total CPU usage for mining all the graduals itemsets

(Figure 4.(a)), the total number of nodes stored in the

B-Trees , the average size of Btree .As we have

obtained a very large log file, we have computed a

smaller one computing the average of these values in

groups of 100 elements. The group number is shown

in the horizontal axis of all the charts, this gives us a

time reference.If we observe in detail the results

presented in Figure 4(a), we can see that the CPU

time is constant over the time, then it is clear that our

approach is able to work in real time scenario.

This graph (fig 4(b))shows the memory utilization of

Btree and FP tree. Btree requires less memory as

compare to FP tree.

 Graph (4b)

However, we should say that the most supported

rules are exactly the same in both cases.For this

reason, we really believe that such difference is not

significative considering the time improvement we

obtain.

5. CONCLUSION

Data stream mining is one of the most intensely

investigated and challenging work domains in

contemporary work in the data mining discipline as a

whole. The peculiarities of data streams render

conventional mining schemes inappropriate.

In this dissertation we used novel approach for

mining the closed item set from a Data stream. We

have implemented B-tree to store the closed item set

with their support count for this we use Apriori

principal to reduce the unnecessary power set

creation and prune closed itemset with frequent

itemset. Proposed work develop an incremental

frequent itemset mining Algorithm based on the

Data stream.The Data Stream can find the lot of data

in data set.. We compare B-tree with FP tree. Our

Experiment show that Btree not only outperformed

FP growth but it provide the short time for pruning

the frequent itemset.

In this work, we presented an overview of a

novel approach for mining the Frequent itemsets

from a data stream. We have implemented an

efficient closed prefix B-tree to store the intermediate

support information of frequent item sets.

REFERENCE

R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad.

Depth first generation of long patterns. KDD’00,

pages 108–118, 2000.

R. Agrawal, T. Imielinski, and A. N. Swami. Mining

association rules between sets of items in large

databases. In ACM SIGMOD’93, pages 207–216,

Washington, D.C.1993.

R. Agrawal and R. Srikant. Fast algorithms for

mining association rules. In VLDB’94, pages 487–

499, 1994.

R. Agrawal and R. Srikant. Mining sequential

patterns. In ICDE’95, pages 3–14, 1995.

B. Goethals and M. J. Zaki. Advances in frequent

itemset mining implementations: Introduction to

fimi03. In Prodeeding of the 1st IEEE ICDM

Workshop on Frequent Itemset Mining

Implementations (FIMI’03), Nov 2003.

G. Grahne and J. Zhu. Efficiently using prefix-trees

in mining frequent itemsets. In 1st IEEE ICDM

Workshop on Frequent Itemset Mining

Implementations (FIMI’03), Nov 2003.

J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent

patterns without candidate generation: A frequent-

pattern tree approach. Data Mining and Knowledge

Discovery, 8:53– 87, 2004.

M. Kamber, J. Han, and J. Chiang. Metarule-guided

mining of multi-dimensional association rules using

data cubes. In Knowledge Discovery and Data

Mining, pages 207–210, 1997.

H. Mannila, H. Toivonen, and A. I. Verkamo.

Discovery of frequent episodes in event sequences.

Data Mining and Knowledge Discovery, 1(3):259–

289, 1997.

Savasere, E. Omiecinski, and S. B. Navathe. An

efficient algorithm for mining association rules in

large databases. In VLDB’95, pages 432–444, 1995.

H. Toivonen. Sampling large databases for

association rules. In VLDB’96, pages 134–145, Sep.

1996.

M. Zaki and K. Gouda. Fast vertical mining using

diffsets. In ACM SIGKDD’03, Washington, DC,

Aug. 2003.

Claudio Lucchese Mining frequent closed itemsets

out of core 2004

