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Abstract: Association rule mining, one of the most important and well researched techniques of data mining, was 

first introduced in. It aims to extract interesting correlations, frequent patterns, associations or casual structures 

among sets of items in the transaction databases or other data repositories.. However, no method has been shown 

to be able to handle data streams, as no method is scalable enough to manage the high rate which stream data 

arrive at. More recently, they have received attention from the data mining community and methods have been 

defined to automatically extract and maintain gradual rules from numerical databases. In this paper, we thus 

propose an original approach to mine data streams for Association rule mining. Our method is based on B-Trees 

and FP growth in order to speed up the process. B-Trees are used to store already-known for order to maintain 

the knowledge over time  and provide a fast way to discard non relevant data while FP growth. 

 

1. Introduction of FP growth 

The problem of mining association rules from a data 

stream has been addressed by many authors but there 

are several issues (as highlighted in previous 

sections) that remain to be addressed. In the 

following section existing literature based on the 

problems in data stream mining that is addressed. 

The work in this domain can be effectively 

classified into three different domains namely, Exact 

methods for Frequent Itemset Mining, Approximate 

Methods and Memory Management techniques 

adopted for data stream mining[1]. 

2. Exact approaches to Frequent Itemset 

Mining 
Fequent-pattern mining plays an essential 

role in mining associations[1] if any length k pattern 

is not frequent in the database, its length (k + 1) 

super-pattern can never be frequent. The essential 

idea is to iteratively generate the set of candidate 

patterns of length (k+1) from the set of frequent-

patterns of length k (for k ≥ 1),and check their 

corresponding occurrence frequencies in the 

database. 

The Apriori heuristic achieves good 

performance gained by (possibly significantly) 

reducing the size of candidate sets. However, in 

situations with a large number of frequent patterns, 

long patterns, or quite low minimum support 

thresholds, an Apriori-like algorithm may suffer from 

the following two nontrivial costs:– It is costly to 

handle a huge number of candidate sets. For example, 

if there are 104 frequent 1-itemsets, the Apriori 

algorithm will need to generate more than 107 

length-2 candidates and accumulate and test their 

occurrence frequencies. Moreover, to discover a 

frequent pattern of size 100, such as {a1, . . . , a100}, 

it must generate 2100 − 2 ≈ 1030 candidates in total. 

This is the inherent cost of candidate 

generation, no matter what implementation technique 

is applied.– It is tedious to repeatedly scan the 

database and check a large set of candidates by 

pattern matching, which is especially true for mining 

long patterns.Can one develop a method that may 

avoid candidate generation-and-test and utilize some 

novel data structures to reduce the cost in frequent-

pattern mining? This is the motivation of this 

study[5]. 

  In this work, we develop and integrate the 

following three techniques in order to solve this 

problem.First, a novel, compact data structure, called 

frequent-pattern tree, or FP-tree in short,is 

constructed, which is an extended prefix-tree 

structure storing crucial, quantitative information 

about frequent patterns. To ensure that the tree 

structure is compact and informative, only frequent 

length-1 items will have nodes in the tree, and the 

tree nodes are arranged in such a way that more 

frequently occurring nodes will have better chances 

of node sharing than less frequently occurring ones. 

Subsequent frequent-pattern mining will 

only need to work on the FP-tree instead of the whole 

data set. Second, an FP-tree-based pattern-fragment 

growth mining method is developed, which starts 

from a frequent length-1 pattern (as an initial suffix 
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pattern), examines only its conditional-pattern base (a 

“sub-database” which consists of the set of frequent 

items co-occurring with the suffix pattern), constructs 

its (conditional) FP-tree, and performs mining 

recursively with such a tree[5][6]. The pattern growth 

is achieved via concatenation of the suffix pattern 

with the new ones generated from a conditional FP-

tree.                                                                  

3 PROPOSED METHOD 

3.1 Introduction 

The previous chapters have described the 

fundamental background behind closed itemset 

mining, work objectives, overall architecture, and 

experimental design. This chapter will focus on the 

experimental findings. Both B treee and FP were 

tested on synthetic datasets and compared against 

predefined performance metrics such as Accuracy, 

computational performance, and Memory  

consumption. Supposed our Database is ginven in 

this format.  

 

 

Transactions SALARY CAR 

T1 2000 2 

T2 3000 3 

T3 3500 4 

T4 2500 4 

T5 1000 1 

T6 4000 3 

 

Table 1.(example) 

 

3.2 Findings from Experiment 1 

This experiment was mainly designed for comparing 

Data structure using Btree and FP Tree with respect 

to performance. We first varied the minimum support 

threshold while keeping the delta parameter constant. 

We recorded the accuracy, performance and memory 

consumption for Data structure and then repeated the 

procedure for FP tree. For this experiment, we have 

used  dense datasets generated using the IBM data 

generator (IBM). The Recall and Precision were 

calculated by comparing Data structure using FP Tree 

and FP tree results against the Apriority 

implementation  

The Apriority implementation was run against data 

batched across a fixed number of frames and 

presented as a single unit fixed size dataset to the 

Apriori algorithm. It should be stressed that Apriori 

was only used for benchmarking purposes for the 

Precision and Recall values. As mentioned earlier in 

the thesis Apriori cannot be used in an actual data 

stream environment.  

In this section, we firstly give an overview of our 

approach focusing on the requirements needed in a 

data stream mining scenario. Following, we explain 

in detail the gradual rule mining algorithms used in 

our approach. Finally,  provide the complexity of the 

most costly algorithm. 

 

 

Transactions SALARY CAR B-TREE 

T1 0.4 0.4 0.4 

T2 0.6 0.6 0.6 

T3 0.7 0.8 0.75 

T4 0.5 0.8 0.65 

T5 0.2 0.2 0.2 

T6 0.8 0.6 0.7 

 

Table 2: Normalized Database (min Salary=0, max 

Salary=5,000,min Cars=0, max Cars=5), and  b tree 

value. 

3.3 Basic Idea 

We consider databases such as described in Table 2 

where attribute values have been normalized in [0, 1], 

as shown by Table 2. For this purpose, we consider a 

minimum and maximum value for every attribute1. 

In order to have a global idea of each tuple for 

ordering them, we compute a summary using an 

BTree. Note that it is very easy to manage both 

increasing and decreasing gradualness. Indeed, as 

weights give importance to small or large values, it is 

not the same to mine a gradual itemset like {(Salary, 

+)(Cars, +)} or {(Salary, +)(Cars,−)}. For the former 

case, we have to compute the   Btree value as B 

tree(asalary, acars), whereas, for the latter one, we 

have to compute the Btree value as  Btree(asalary, 

(1−acars)). 

For instance, the last column of the Table 2 reports 

the value computed by giving the same weight to 

every attribute value.   Here shows the process  for 

mining the gradual itemset {(Salary, +)(Cars, +)}. 

Example 1 Consider each attribute of the normalized 

database of Table 2 as the data coming from the data 

stream, and suppose that the gradual itemset to mine 

is GI: {(Salary, +)(Cars, +)}. At the beginning the 

corresponding B-Tree for GI is empty. At time ts1, 

the tuple T1 arrives andB tree(T1) is computed. As 

the B-Tree is empty, T1 is inserted in the B-Tree root 

node. At time Ts2, the tuple T2 arrives and Btree(t2) 

is computed. As Btree(t1) <=Btree(T2), we have to 

check that T1.Salary ,= T2.Salary and t1.Cars 
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<=T2.Cars hold. As both conditions are fulfilled t2 is 

inserted in the B-Tree (as it is shown in Figure 

2.(b)).This process is repeated at time Ts3 with tuple 

T3 checking that T3 attributes

 
 

               Fig 2(b) BTree insertion Example 

are larger thanT2 attributes (Figure 2.). Then, at time 

Ts4, the tuple T4 arrives and the tree(T4) is 

computed. As Btree(T2) <= (T4) <= Btree(T3), we 

have to check that T2.Salary <=T4.Salary 

<=T3.Salary and T2.Cars <= T4.Cars <= T3.Cars 

hold. As T2.Salary = 0.6 and T4.Salary = 0.5 the first 

condition does not hold and tuple T4 cannot be 

inserted in the B-Tree. After that, tuple T5 is inserted 

at time Ts5 because Btree(T5) <=Btree(T1) and 

T5.Salary <=T1.Salary and T5.Cars <= T1.Cars hold, 

this is depicted in Figure 2(b). Finally, at time Ts6 

tuple t6 is discarded in a similar way as T4.This is the 

key idea. 

 

3.3.1 Algorithm Definition 

In this section, we provide the algorithms 

and all the details of our proposal.We assume that 

tuples coming from the stream are already 

normalized.Algorithm 1 is in charge of initializing 

the gradual itemsets and B-Trees lists (lines 2-3). 

Basically, such initialization consists in  creating all 

the possible gradual itemsets taking into account the 

number of attributes of tuples, and creating for each 

one an empty B-Tree. Following, we have to 

compute when the first pruning process will be 

executed . As we are interested in maintaining in 

memory all tuples belonging to a certain period of 

time we have to prune the B-Trees for the first time 

when we have in memory tuples of two window 

frames. In the main loop of Algorithm 1, we process 

the data. 

Algorithm 1: Data Structure using Btree 

Data: s: Stream, q: Quantifier, w: Window 

Step 1:-   Begin 

Step 2 :-  g = Gradual itemset list; 

Step3:-    b = B-Tree list; 

Step 4 :-   InitializeGradualRule(g); 

Step 5:-    InitializeBTree(b); 

Step 6 :-   np = now() + 2w; 

Step 7 :-    while (!s.empty()) do 

Step 8 :-   GradualRuleProcessing(g,b,s,q); 

Step 9 :-   if (now() <=np) then 

Step 10:-   BTreePruning(b,w); 

Step 11:-   np = now() + w; 

The most costly algorithm is the Algorithm 2. The 

complexity of this algorithm is related to the number 

of gradual itemsets (s) and to the number of tuples 

that we have to process in a window frame (n).B-

Tree operations. 

Algorithm 2:      

        Data: itemset list, b: B-Tree list, s: Stream, 

q:Quantifier 

Step 1:- begin 

Step 2 :-while (!s.empty()) do 

Step 3 :- a=read(s); 

Step 4:- for i ( 1 to g.Size do 

Step 5:- ReverseValues(g.get(i), a); 

Step 6:- o = Compute Btree(a, q); 

Step 7:- prev = PreviousNodeSearch(o, b.get(i)); 

Step 8:- susbseq = SubsequentNodeSearch(o, 

b.get(i)); 

Step 9:- if (checkRule(g.get(i), b.get(i), a, prev, 

subseq)) then 

Step 10:- b.get(i).addNode(o, a, timestamp); 

Step 11:- UpdateSupport(g.get(i)); 

Step 12:- end  

Used in this algorithm (search and insertion) 

have a complexity equal to O(log (n)). In the worst 

scenario, for each new tuple, we have to execute two 

B-Tree operations (one search and one insertion) for 

each gradual itemset to mine. Therefore, the 

complexity of this algorithm is equal to O(2s log (n)). 

As Algorithm 2 has a sub-linear complexity and the 

tilted-time window technique allows us to keep n as 

small as possible, we argue that it is affordable for 

most of real time scenarios. 

 

4. Results Analysis and Discussion: 

In this section, we present a complete analysis of the 

experiments carried out in this work, as well as, a 

short discussion about why the results obtained show 

that our approach is suitable for the stream mining 

scenario. The experiments were performed using a 

Matlab and a windows Operating system.                                         

 
 

   Graph 4(a)(CPU time to generate a tree) 
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All the Graphs presented in this section were 

calculated in the same way. After processing each 

new tuple the following statistics were computed: the 

total CPU usage for mining all the graduals itemsets 

(Figure 4.(a)), the total number of nodes stored in the 

B-Trees , the average  size of Btree .As we have 

obtained a very large log file, we have computed a 

smaller one computing the average of these values in 

groups of 100 elements. The group number is shown 

in the horizontal axis of all the charts, this gives us a 

time reference.If we observe in detail the results 

presented in Figure 4(a), we can see that the CPU 

time is constant over the time, then it is clear that our 

approach is able to work in real time scenario. 

 

This graph (fig 4(b))shows the memory utilization of 

Btree and FP tree. Btree requires less memory as 

compare to FP tree. 

 
                       Graph ( 4b) 

However, we should say that the most supported 

rules are exactly the same in both cases.For this 

reason, we really believe that such difference is not 

significative considering the time improvement we 

obtain. 

5. CONCLUSION 

Data stream mining is one of the most intensely 

investigated and challenging work domains in 

contemporary work in the data mining discipline as a 

whole. The peculiarities of data streams render 

conventional mining schemes inappropriate. 

In this dissertation we used novel approach for 

mining the closed item set from a Data stream. We 

have implemented B-tree to store the closed item set 

with their support count for this we use Apriori 

principal to reduce the unnecessary power set  

creation and prune closed itemset with frequent 

itemset.  Proposed work develop an incremental 

frequent itemset mining Algorithm based on the  

Data stream.The Data Stream can find the lot of data 

in data set.. We compare B-tree with FP tree. Our 

Experiment show that Btree not only outperformed 

FP growth but it provide the  short time for pruning 

the frequent itemset. 

In this work, we presented an overview of a 

novel approach for mining the Frequent  itemsets 

from a data stream. We have implemented an 

efficient closed prefix B-tree to store the intermediate 

support information of frequent item sets. 
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