
 Volume 2, Issue 2, February 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper

 Available online at: www.ijarcsse.com

The general comparison between AIMD and AIAD

Congestion Control Algorithms
 1P.Radha Krishna Reddy

 2
G.Sireesha

3
 C.V.Chirangeevi Kumar

 M.Tech Student Assistant Professor Assistant Professor

 JNTU-Anantapur,INDIA JNTU-Hyderabad,INDIA JNTU-Anantapur,INDIA

Abstract: Here we are going to see the general difference between two linear congestion control protocols

{AIMD, AIAD} in the context of these various loss recovery and router algorithms. We show that while AIMD is

an unambiguous Choice for the traditional setting of Reno-style loss recovery and FIFO drop-tail routers, it fails

to provide the best good put performance in the more modern settings. Where AIMD fails, AIAD proves to be a

reasonable alternative. From the early days of modern congestion control, ushered in by the development of

TCP's and DEC bit's congestion control algorithm. There has been widespread agreement that linear additive-

increase-multiplicative-decrease (AIMD) congestion control algorithms should be used. However, the early

congestion control design decisions were made in a context where loss recovery was fairly primitive (e.g. TCP

Reno) and often timed-out when more than a few losses occurred and routers were FIFO drop-tail. In

subsequent years, there has been significant improvement in TCP's loss recovery algorithms. For instance, TCP

SACK can recover from many losses without timing out. In addition, there have been many proposals for

improved router queuing behavior. For example, RED active queue management and Explicit Congestion

Notification (ECN) can tolerate bursty flow behavior.

Keywords: AIMD, MIMD, AIAD, congestion control, active queue management.

1. Introduction:

The first sophisticated transport congestion control algorithms,

developed almost simultaneously for DEC bit [1] and TCP [2],

employed Additive-Increase Multiplicative-Decrease (AIMD)

window adjustment algorithms. A later theoretical study [3]

confirmed, in a simple model with synchronous congestion

signals and static bandwidth, that AIMD was the only fair and

stable choice among the AIAD, In the past decade, due to the

tremendous success of TCP congestion control and to the

enduring persuasiveness of [3], the superiority of AIMD has

become a widely accepted and deeply held belief. As a result,

there have been very few research studies advocating, or even

exploring, linear schemes other than AIMD. While there have

been many papers on congestion control, most of them

investigate algorithmic issues that fall well within the AIMD

paradigm. Of those departing from the AIMD paradigm, the

majority proposes either non-linear congestion control

algorithms [4] or approaches that differ radically from TCP [5,

6]. Notable exceptions to this statement are [7] and [8, 9]

which propose linear control algorithms other than

AIMD.TCP-Reno reacts fairly severely to losses. If a Reno

flow incurs more than a few losses within a given window, it

times out and restarts. Thus, in the past, it was important that

the window adjustment algorithm increase its window

conservatively to avoid multiple losses. However, much

progress has been made on loss recovery algorithms in the

past decade. The more modern loss recovery schemes, like

SACK [10, 11], incur only a gentle penalty from losses since

they can endure many packet drops within a single window

without restarting. Hence, there may be less of a need for

conservative window adjustment algorithms.

Our simulations show that AIMD is the superior design choice

in the traditional setting of TCP Reno loss recovery and FIFO

drop-tail routers. AIMD is no longer superior. TCP SACK,

active queue management techniques and fair queuing in

routers enable the other linear alternatives to provide

comparable and sometimes significantly better good put

http://www.ijarcsse.com/

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

performance. We observe that AIAD is always among the best

linear alternatives, and can even achieve fairness as long as

routers are not FIFO drop-tail. AIAD and also provide good

performance.

There are a few things to keep in mind when choosing a value

for N.

1: The sender must not transmit too fast. N should be bounded

by the receiver’s ability to process packets.

2: N must be smaller than the number of sequence numbers (if

they are numbered from zero to N) to verify transmission in

cases of any packet (any data or ACK packet) being dropped.

3: Given the bounds presented in (1) and (2), choose N to be

the largest number possible.

The receiver window is one frame wide; on a frame error the

receiver discards the frame and all subsequent fames and

sends no ACKs. Eventually the senders will timeout and

resend the damaged frame and all subsequent frames. This can

waste a lot of bandwidth if the error rate is high.

2 Is AIMD Clearly Superior?

Our first question is whether AIMD is clearly superior to the

other choices in terms of the good put achieved. For each of

the algorithms we can find scenarios in which it performs the

best and the worst among the algorithms. In fact, this suggests

that special care needs to be taken in deciding which

algorithm is the best. To maximize the usage of the available

bandwidth, a congestion control scheme needs to balance

between (1) tracking rapid changes of the available bandwidth,

and (2) minimizing packet losses. The faster a sender modifies

its window size, the faster the sender can track changes of the

available bandwidth. On the other hand, fast and large

changes of the window size increase the probability of the

sender overshooting the available bandwidth, which may

result in a large number of packets being dropped. This has

two negative implications. First, more losses mean that more

packets are retransmitted, and thus a higher fraction of the

available bandwidth is devoted to retransmitting old packets.

Second, a burst of losses can hurt the loss recovery algorithm

by forcing it to restart.

Figure 1: The good put seen by the various algorithms for the

given variation is shown in the table below each plot.

The good put, measured as the fraction of average available

bandwidth used to transmit unique packets, is a number in [0;

1]. The canonical congestion control schemes we consider use

either multiplicative or additive schemes to vary the window

size. When the available bandwidth increases slowly, an

additive increase will likely outperform a multiplicative

increase since it is fast enough to track the changes and is less

likely to overestimate the available bandwidth. In contrast, a

multiplicative increase will likely perform better when

bandwidth increases are large and abrupt. The same reasoning

applies to bandwidth decreases and the window decrease

algorithms. Intuitively, this is the reason why no single

canonical congestion control scheme would be able to

dominate across a wide range of scenarios.

Figure 1 shows two patterns of bandwidth variations. We

measure the goodput for the two linear algorithms in these

scenarios. The scenarios are chosen such that in each case

there is a different algorithm that achieves the highest

throughput. Figure 1(a) shows a saw-tooth bandwidth pattern

under which AIMD performs the best. Com-pared to AIMD,

the window size under AIAD decreases too slowly. As a result

these schemes experience more losses, and consequently more

re-transmissions than AIMD.

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

Figure 2: Bad cases for AIAD (Figure (a) and MIMD (Figure

(b))). Notice that the y-axes are on different scales. Figure 1(b)

shows an example in which AIAD performs the best. The

reason for this result is somewhat more subtle. When the

available bandwidth drops, AIAD reduces the window size

slower than the other disciplines. While this causes AIAD to

lose slightly more packets, the decrease of the window size is

not enough to offset the increase of the window size during

the previous high bandwidth period. Thus, the window size of

AIAD increases continuously over multiple high bandwidth

periods. In contrast, MIAD and MIMD cannot avoid timeouts

as they constantly overshoot the available bandwidth. Finally,

AIMD does not perform well because the window decrease

during the low periods almost offsets the window increase

during the high periods. AIAD suffers from the fact that it

cannot increase the window size fast enough during the high

periods.

When the bandwidth decreases, AIAD and MIAD lose too

many packets, and TCP SACK is no longer able to avoid

retransmission timeouts. On the other hand, AIMD cannot

exploit the available bandwidth as its window size increases

too slowly during the high periods.

For instance, AIMD exhibits the worst performance in the

experiments presented in Figures 1(b), 1(c) and 1(d)). In

Figure 2(a), both the additive increase algorithms are too slow

to catch up with the sudden increase of the available

bandwidth. Between AIAD and AIMD, AIAD cannot track

the rapid decrease in the available bandwidth as well.

3 Evaluation Methodology

In order to meaningfully compare the algorithms, we make

two key guiding assumptions. Our first guiding assumption is

that congestion control algorithms should not be designed for

any particular scenario, no matter how realistic that scenario

may be at the time. The load model in the Internet may change

abruptly as new applications arise or as the nature of the

infrastructure changes. Thus, congestion control algorithms

should be evaluated across a wide variety of scenarios. Our

second guiding assumption is that robustness is more

important than optimality, that is, we demand that the

congestion control algorithm perform reasonably in most

situations and are more concerned with its worst-case

performance than its best-case performance.

Let A be the set of congestion control algorithms that we wish

to compare, a consists of AIMD, AIAD. Let E be the set of

possible environments or scenarios that these algorithms

might be faced with, where a scenario is a particular variation

in the available bandwidth.

For the particular quantity of interest -be it goodput, fairness,

loss, or delay -let Sa(e) denote the score of algorithm a in a

given environment e. Let Smax(e) = maxa€A {Sa(e)} denote the

best score achieved in scenario e among the algorithms in A.

Let da(e) = Smax(e)- Sa(e); da(e) is a measure, for a given

environment e, of how close a comes to matching the best

performance among the algorithms in A. Out of these per-

environment scores we define two aggregate scores. The rank

Ca is the worst-case score among the various environments: Ca

= maxeЄE{da(e)}. The rank measures the worst-case

performance of the algorithm, and lower ranks represent more

robust algorithms, those that never do particularly poorly. The

other measure is the aggregate value Da of the differences: Da

= ∑eЄE da(e). The lower the values of Da and Ca are, the better

the algorithm a is, for the given metric.

 Environment Variation in per-flow available

bandwidth (Bt)

1 Cons-low

(CL)

Constant at 1 Mbps

2 Cons-High

(CH)

Constant at 10 Mbps

3 Sq-low

(SQL)

10Mbps→5Mbps→10Mbps….., at

regular intervals (5s)

4 sq-high

(SQH)

10Mbps→1Mbps→10Mbps….., at

regular intervals (5s)

5 rw-low Bt+1 € [Bt –Δ ,Bt + Δ],

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

(RWL) B0 = 1Mbps, Δ= 0:5B0

6 rw-high

(RWH)

same as above except that B0 =

10Mbps

7 rd-low

(RDL)

Bt Є [0,B0], B0 = 1Mbps

8 rd-high

(RDH)

Bt Є [0,B0], B0 = 10Mbps

9 rw-additive

(RWA)

Bt+1 Є [0,Bt + Δ], B0 = 1Mbps, Δ =

0:25B0

10 rw-

multiplicative

(RWM)

Bt+1 Є [0,μBt], B0 = 1Mbps, μ= 5/3

11 real-cons-low

(RCL)

Pareto length flows arrive with

Poisson inter-arrival times

12 real-cons-

high (RCH)

Same as in real-cons-low, except that

the mean inter-arrival time is very

low

13 real-sq

(RSQ)

Mean inter-arrival time varies in a

square manner

3.1 Choosing the Set E of Environments

In choosing the components of E, we aim to include enough

environments to cover a wide variety of situations while still

keeping the set small enough to be manageable. We

deliberately choose some of the environments to be fairly

extreme. The goal for these is not to be realistic, but to test the

algorithms under unusually harsh conditions. We include a

few environments that react reasonably realistic scenarios.

Finally, we add few other environments that we hope would

help reveal key aspects of the algorithms' behavior. The

resulting composition for the set E is shown in Table 2.

Most of the scenarios are on a simple topology (described

later) where the single congested link has varying available

bandwidth. The basic bandwidth variations we consider are

described below (we describe the variation in per flow

available bandwidth):

 Constant: The available bandwidth is constant. We

included a cons-low (CL) environment where the constant

bandwidth is low (1Mbps) and a cons-high (CH)

environment where the constant bandwidth is high

(10Mbps).

 Square-Wave: the available bandwidth undergoes square

wave oscillations, with the band-width variations

occurring every 5 seconds. In the sq-low (SQL) scenario,

the bandwidth varies between 5Mbps and 10Mbps. In the

sq-high (SQH) scenario, the bandwidth varies between

1Mbps and 10Mbps.

 Random Walk (RWL, RWH): Here the bandwidth varies

according to a random walk. If the bandwidth at time t is

Bt then the next bandwidth is chosen uniformly from the

interval [Bt-Δ, Bt +Δ] where Δ = 0:5B0. For rw-low

(RWL), B0 = 1Mbps and for rw-high (RWH), B0 =

10Mbps.

 Random (RDL, RDH): The bandwidth is chosen

uniformly randomly from the interval [0, B0] where B0 =

1Mbps for rd-low (RDL) and B0 = 10Mbps for rd-high

(RDH).

 Additive Random Walk (RWA): For the environment

rw-additive (RWA), the available band-width is chosen

from an additively constrained interval [18]. That is, the

bandwidth at time t+1 is chosen uniformly at random

from the interval [0;Bt+Δ]. Here, B0 = 1Mbps, Δ = 0:25.

 Multiplicative Random Walk (RWM): In the

environment rw-multiplicative (RWM), the avail-able

bandwidth is picked from a multiplicatively constrained

interval [18]. In other words, Bt+1 is chosen uniformly at

random from the interval Bt+1 Є [0, μBt]. Here B0 =

1Mbps, μ = 5=3.

 Realistic Cross Traffic: The variation in available

bandwidth is determined by pareto-length flows arriving

at the bottleneck router with Poisson inter-arrival times.

For the environment real-cons-low (RCL), the mean

inter-arrival time is 0.03s, while for real-cons-high (RCH)

it is 0.01s. For the environment real-sq (RSQ), the mean

varies in a square manner between 0.03s and 0.01s, where

the variation in mean occurs every 5 seconds. These

scenarios were chosen to react realistic load and cross-

traffic models.

In all the cases 1 through 10 listed in Table 2, whenever Bt

exceeds the capacity of the link, C, we set it to C.

3.2 Choosing the Set A of Algorithms

For LC Є{AIMD, AIAD}, let LC(a,b) denote a linear

congestion control scheme with an increase parameter of a

and a decrease parameter of b.

For each of the four linear control schemes, we would like to

pick a single set of parameters that provides reasonable

performance across all possible settings of loss recovery

schemes, router algorithms and bandwidth variations. Such a

choice would ensure two key properties: (1) the single

algorithm in each case (for example, AIMD (1, 0.1)) would

best summarize the overall behavior of the entire family of

linear control schemes that the algorithm belongs to (for

example, AIMD). (2) The single algorithm would ensure near-

optimal performance across all possible settings. In addition,

while choosing the parameters (a; b) of such a representative

algorithm we try to ensure that the choice does not obscure the

core qualities of increase and decrease of each linear control

algorithm. For example, we do not want to pick the decrease

parameter of the candidate AIMD algorithm to be very close

to 1, lest it should look similar to an additive decrease. Clearly,

this property needs to hold over the entire range of sizes of the

congestion window spanned by the bandwidth variations that

the algorithms are exposed to. Subjectively, we list out the

following conditions to be satisfied by the linear control

algorithms over all possible window sizes:

 Additive Increase (AI): The additive increase component

should be such that at no instant of time should the

window undergo an increment greater than about 10% the

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

current size. This serves to distinguish an additive

increase form a multiplicative increase.

 Additive Decrease (AD): The additive decrease

component should be such that the decrement in the

window should never be more 10%. This serves to

differentiate it from a multiplicative decrease.

Figure 3: Topology for the simulations. Figure (a) shows the

setting for simulations where a CBR source starting on S1 was

used to control the available bandwidth on the link R1-R2. For

the simulations involving realistic traffic patterns, the setting

shown in Figure (b) was used.

From the way the bandwidth variations were chosen, it is not

hard to see that the lowest window size to ever undergo an

increment is about 12-15. Similarly the lowest window size to

ever undergo a decrement is about 25-20. Applying the above

four conditions, we get the following permissible values for

the parameters, approximately:

AI < 3, AD<3, MI > 0:1 and MD < 0:9. The results of the

comparison between the various candidate algorithms in

classes {AIMD, AIAD} are shown in the appendix. Based on

these results, we choose the following candidate linear control

schemes for comparison: AIMD(1,0.8), AIAD (1,3).

3.3 Simulation Set-up

We use simulations in NS-2 to study the above congestion

control schemes under the various combinations of loss

recovery and router algorithms and against the environments

described above. In each simulation we have n identical TCP

test flows using the particular linear congestion control

scheme under investigation, and we subject them to different

variations in the available bandwidth.

The topology used for testing with variations 1 through 10 is

shown in Figure 3(a). To implement variations in the available

bandwidth in these scenarios, we choose to keep the

bandwidth of the link constant and introduce CBR-like cross-

traffic to consume varying amounts of bandwidth. If the link

bandwidth is B and the cross-traffic consumes Bc then we say

that the available bandwidth is Ba = B-Bc. The descriptions

above of the bandwidth variation scenarios can be turned into

recipes for how the cross-traffic rate should be varied. When

testing with Drop-Tail and RED router mechanisms (at R1),

we employ a single rate controlled CBR source (between end-

points S1 and D1) to realize the bandwidth variations 4. When

testing with DRR schedulers, however, we use a time-varying

number of fixed rate CBR sources (between S1 and D1). This

is because, if we have n simultaneous TCP flows being tested,

a single CBR source would be limited to at most 1 n+1th of

the available bandwidth at any instant of time when DRR is

used, and so the available bandwidth would not vary as

desired. Hence, we vary the number of CBR flows to

accurately implement the variation in available bandwidth. A

simple calculation shows that to achieve an available

bandwidth of Ba we need n(C - Ba)=Ba CBR flows, where C is

the capacity of the link R1 � R2 and n is the number of test

TCP flows. The test TCP flows are between Si and Di. Also,

we randomize the round-trip times slightly to avoid

synchronization effects. While the topology shown in Figure

3(a) is well suited for tests in which we control available

bandwidth directly, it is not amenable to the implementation

of bandwidth variations 11 through 13. We use the topology

shown in Figure 3(b) to implement variations 11 through 13.

In what follows, we first describe the set-up in detail and then

explain the reasons for the difference from that of Figure 3(a).

TCP-SACK flows implementing AIMD with pareto-

distributed lengths and Poisson inter-arrival times run between

nodes S0 and D. These constitute the cross traffic on the link

R1-R2. The n test TCP flows are between nodes Si (i = 1…, n)

and D. In addition we have n place-holder long-lived flows

between nodes S0 and D0. The router R0 employs DRR

scheduling. The router at R1 implements either DRR or RIO

(explained in greater detail below). The TCP-SACK cross

traffic is given priority over the test traffic at router R1. In

addition, the bandwidth between R0 and R1 equals that of link

R1-R2. While simulating the environments 11 through 13, we

would like to ensure that the TCP flows constituting the cross-

traffic on link R1-R2 are allocated their fair-share of the R1-

R2 capacity irrespective of the congestion control algorithm

employed by the test flows. This is ensured by using DRR at

router R0 and using n long-lived place-holder flows between

S0 and D0. The place-holder flows emulate the n test-flows so

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

that when the pareto-distributed TCP flows enter link R1-R2,

their aggregate occupies no more than the fair-share. However,

we also want the TCP flows constituting the cross-traffic to

not incur any more losses beyond link R0-R1 since they

already are at their fair-share upon exiting this link. This is

ensured by: (i) using RIO at router R1 and marking the

packets belonging to the cross traffic as high priority and (ii)

using TCP-SACK for the cross traffic.

When testing with the setting of Drop-tail buffers, we modify

the parameters for the low priority packets at router R0 to

implement Drop-tail behavior on packets belonging to the test

flows. When testing with the DRR setting, we use a DRR

scheduler, instead of RIO, at router R1. Notice that the flows

belonging to the cross traffic do not incur any additional

losses when DRR is employed at router R1.

4 Results

As we discussed in the Introduction, we use four metrics in

evaluating the performance of the different congestion control

schemes:

 Goodput: We measure goodput as the fraction of

available bandwidth used to transmit unique packets. The

goodput values all lie in [0; 1].

 Delay: The queuing delay is measured in milliseconds.

 Loss rate: The loss rate is measured in terms of the

percentage of packets lost (so a score of 5 indicates a 5%

packet loss).

 Fairness: The fairness metric is defined as (gmax-gmin)/

gavg where gmax, gmin and gavg are the maximum, minimum

and average goodputs of the test flows respectively.

We present the results by first describing how the rankings

change when going from the TCP-Reno with its severe loss

penalty to more gentle loss penalties. We then discuss the

impact of different router drop policies and queuing behavior.

While presenting the results, we show both Ca and Da for

goodput. This is because these two aggregate scores show

rather different behavior. We only present the values of Da for

fairness, loss, and delay because the ordering of the Da values

for these quantities is very similar to the ordering of the Ca

values. For delay and loss, we also show the raw values as the

absolute magnitude of delays and losses cannot be easily

inferred from the value of Da.

4.1 The Impact of Loss Recovery Algorithms

TCP Reno incurs a severe penalty when recovering from

losses; TCP SACK is more adept at handling losses and

therefore incurs a much gentler penalty. We performed

simulations of the congestion control algorithms with these

two types of loss recovery (TCP Reno and TCP SACK). We

simulated these schemes on the various scenarios; in these

tests the routers used FIFO, drop-tail routers with buffers

sized to match the delay-bandwidth product of the network.

4.1.1 TCP Reno Loss Recovery

The results for TCP Reno loss recovery are shown in Figure

4Here, and in subsequent tables, we mark the algorithms with

the best goodput (best values for both Ca and Da) by

underlining them. From the results, AIMD and AIAD deliver

roughly similar goodput in all the test environments.

AIMD provides better fairness than AIAD, although AIMD is

not perfectly fair. In addition, AIMD suffers the fewest losses,

with MIAD suffering the most. AIMD and AIAD have the

highest delay values. AIMD and AIAD have the highest delay

values. To summarize, with TCP Reno loss recovery and

FIFO drop-tail routers, AIMD and AIAD provide the best

goodput performance. However, AIAD is not as fair.

4.1.2 TCP SACK Loss Recovery

Figure 5 shows the results for TCP SACK loss recovery, again

with FIFO drop-tail routers. The absolute values (which we

don't show in our tables) of the goodputs are significantly

higher than with TCP Reno.

5 Related Work

In the past, there have been few research studies exploring

linear alternatives to TCP's congestion control algorithms. Of

these, two separate studies that bear similarity to our work are.

 In this study, the increase component of the congestion

control algorithms can be additive, multiplicative or non-

linear. The decrease component is chosen to be multiplicative.

The paper shows via analysis that in such a fair network,

MIMD is more responsive to congestion notifications than the

other schemes, including AIMD. Thus [8] concludes that

MIMD can track changes in bandwidth more effectively. This

work differs from ours in two key aspects: firstly, additive

decrease schemes are outside the purview of the analysis in

[8]; secondly, the impact of loss recovery is not factored into

the analysis. As a result, the conclusions in [8] are different,

qualitatively, from our observations about the impact of fair-

queueing.10 (presented in Section 4.2.4): We have shown that

while under Reno-style loss recovery AI schemes are clearly

dominant, under SACK-style loss recovery all algorithms

except MIAD provide identical goodput performance.

In contrast, [9] employs simulations to study the relative

performance of AIMD and AILD, where, AILD has the same

linear increase as AIMD, but the decrease is defined by the

following equation:

wt+1 = wt-βf, where β is a constant and f is the loss ratio. Also,

the available bandwidth is kept constant. The authors observe

that in networks that use RED-like gateways, AILD is both

efficient and fair and outperforms AIMD. However, the

definition of linear decrease adopted in this study does not

produce a linear control scheme (in the sense we've defined in

our paper) since the drop rate f is a nonlinear function of the

aggregate load. To the best of our knowledge, our study is the

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

first to compare all linear congestion control schemes under a

wide variety of router configurations, different loss recovery

schemes and a wide range of variations in available bandwidth.

There have been other studies on congestion control

algorithms which propose slowly adaptive alternatives to

congestion control that are TCP-friendly and provide identical

throughput as the current TCP under a given steady state loss

rate. For example, [4] proposes non-linear slowly-adaptive

window adjustment algorithms and [6] proposes rate-based

schemes for congestion control. The issues pertaining to the

dynamic behavior of such schemes have been partially

addressed in [19]. Though the work presented in our paper

does not consider such non-linear algorithms and rate-based

schemes, we hope it provides sufficient intuition as to how

these schemes should be evaluated in the long run.

6 Summary

This paper was an attempt to revisit the original design

decision to focus exclusively on AIMD linear congestion

control. We examined the impact of modern developments in

loss recovery and in router algorithms on the choice of the

linear congestion control scheme. We tested the four basic

linear congestion control algorithms in a wide variety of

settings. We affirm that in the traditional context of TCP Reno

loss recovery and FIFO drop-tail routers, AIMD is clearly an

aptly made choice.

In particular, we have shown that AIAD is a reasonable

alternative choice for a modern congestion control scheme. In

fact, AIAD also provides reasonable fairness as long as

routers do not employ FIFO drop-tail queuing. Adding a small

multiplicative component to the additive decrease of AIAD is

enough to ensure that fairness is guaranteed, even when FIFO

drop-tail buffers are employed, without compromising

goodput.

References

[1] K. K. Ramakrishnan and Raj Jain, A binary feeback scheme for

congestion avoidance in computer networks," ACM Transactions on

Computer Systems, vol. 8, no. 2, pp. 158{181, May 1990.

[2] Van Jacobson, Congestion avoidance and control," ACM

Computer Communication Review, vol. 18, no. 4, pp. 314{329, Aug.

1988, Proceedings of the Sigcomm '88 Symposium in Stanford, CA,

August, 1988.

[3] D. Chiu and R. Jain, Analysis of the increase decrease algorithms

for congestion avoidance in computer networks," Computer

Networks and ISDN Systems, vol. 17, no. 1, pp. 1{14, June 1989.

[4] Deepak Bansal and Hari Balakrishnan, TCP-friendly congestion

control for real-time streaming ap- plications," Technical Report

MIT-LCS-TR-806, MIT, Cambridge, Massachusetts, May 2000.

[5] R. J. Gibbens and F. P. Kelly, Resource pricing and the evolution

of congestion control," Automatica, vol. 35, pp. 1969{1985, 1999.

[6] M. Handley, J. Padhye, S. Floyd, and J. Widmer, TCP friendly

rate control (TFRC): protocol specification," Internet Draft, Internet

Engineering Task Force, July 2001, Work in progress.

[7] S. Gorinsky and H. Vin, Additive increase appears inferior," Tech.

Rep. TR2000-18, Department of Computer Sciences, The University

of Texas at Austin, May 2000.

[8] S. Gorinsky and H. Vin, Analysis of binary adjustment policies in

fair heterogeneous networks," Tech. Rep. TR2000-32, Department of

Computer Sciences, the University of Texas at Austin, November

2000.

[9] Narayanan Venkitaraman, Tae eun Kim, Kang-Won Lee, Songwu

Lu, and Vaduvur Bhargavan, Design and evaluation of congestion

control algorithms in the future internet," Poster at ACM

SIGMETRICS, 1999.

[10] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, TCP

selective acknowledgement options," Request for Comments 2018,

Internet Engineering Task Force, Oct. 1996.

[11] K. Fall and S. Floyd, Simulation-based comparisons of tahoe,

reno, and SACK TCP," ACM Computer Communication Review,

vol. 26, no. 3, pp. 5{21, July 1996.

[12] Sally Floyd and Van Jacobson, Random early detection

gateways for congestion avoidance," IEEE/ACM Transactions on

Networking, vol. 1, no. 4, pp. 397{413, Aug. 1993.

[13] Sally Floyd, TCP and explicit congestion noti_cation," ACM

Computer Communication Review, vol. 24, no. 5, pp. 8{23, Oct.

1994.

[14] Alan Demers, Srinivasan Keshav, and Scott Shenker, \Analysis

and simulation of a fair queuing algorithm," in SIGCOMM

Symposium on Communications Architectures and Protocols, Austin,

Texas, Sept. 1989, ACM, pp. 1{12, also in Computer

Communications Review, 19 (4), Sept. 1989.

[15] M. Shreedhar and George Varghese, Efficient fair queuing using

deficit round robin," ACM Computer Communication Review, vol.

25, no. 4, pp. 231{242, Oct. 1995.

[16] The network simulator - ns-2. http://www.isi.edu/nsnam/ns/".

[17] A. Borodin and R. El-Yaniv, Online Computation and

Competitive Analysis, Cambridge University Press, 1998.

[18] R. Karp, E. Koutsoupias, C. Papadimitriou, and S. Shenker,

Combinatorial optimization in congestion control," in Proceedings of

the 41th Annual Symposium on Foundations of Computer Science,

Redondo Beach, CA, 12{14 Nov. 2000, pp. 66}74.

[19] Deepak Bansal, Hari Balakrishnan, Sally Floyd, and Scott

Shenker, Dynamic behavior of slowly- responsive congestion control

algorithms," in Proceedings of ACM SIGCOMM, San Diego,

California, 2001.

[20] Exploring Congestion Control Aditya AkellaSrinivasan Seshan

Scott Shenker Ion Stoica5 May 2002 CMU-CS-02-139

[21]G. Sireesha Analysis for ARQ Protocols on Multi Channels by

using MIMD Congestion Control Algorithm 2011.

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

Bibliography:

Mr. P. Radha Krishna Reddy received his

B.Sc(CS) from Sri Venkateswara University-

Tirupati. M.Sc in Computer science from Sri

Venkateswara University-Tirupati, and pursuing

M.Tech in Computer Science and Engineering from

Vagdevi Institute of Technology and Sciences,

JNTU-Anantapur.

Ms. G.Sireesha received her B.Tech in

Computer science and Engineering from Royal

Institute of Technology and Science, JNTU,

Hyderabad, M.Tech in Computer science

(Parallel computing) from Aurora’s Engineering

College, JNTU, Hyderabad.She is working as a

Assistant Professor in Computer Science and

Engineering in Guru Nanak Institute of Engineering & Technology,

JNTU-Hyderabad.

Mr C.V.Chirangeevi Kumar received his

B.Tech(CSE) from JNTUH-Hyderabad. M.Tech in

Computer Science and Engineering from JNTUH-

Hyderabad. And working as a Assistant Professor in

Computer Science and Engineering from past 3 years.

Now he is working in Vaagdevi Institute of

Technology and Sciences, JNTU-Anantapur.

Mr M. Naresh Babu, working as asst prof since from

last 2 years completed B.Ttech in CSE from JNTUH

and M.Tech in CSE from JNTUA.

