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Abstract: Here we are going to see the general difference between two linear congestion control protocols 

{AIMD, AIAD} in the context of these various loss recovery and router algorithms. We show that while AIMD is 

an unambiguous Choice for the traditional setting of Reno-style loss recovery and FIFO drop-tail routers, it fails 

to provide the best good put performance in the more modern settings. Where AIMD fails, AIAD proves to be a 

reasonable alternative. From the early days of modern congestion control, ushered in by the development of 

TCP's and DEC bit's congestion control algorithm. There has been widespread agreement that linear additive-

increase-multiplicative-decrease (AIMD) congestion control algorithms should be used. However, the early 

congestion control design decisions were made in a context where loss recovery was fairly primitive (e.g. TCP 

Reno) and often timed-out when more than a few losses occurred and routers were FIFO drop-tail. In 

subsequent years, there has been significant improvement in TCP's loss recovery algorithms. For instance, TCP 

SACK can recover from many losses without timing out. In addition, there have been many proposals for 

improved router queuing behavior. For example, RED active queue management and Explicit Congestion 

Notification (ECN) can tolerate bursty flow behavior.  
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1. Introduction:  

The first sophisticated transport congestion control algorithms, 

developed almost simultaneously for DEC bit [1] and TCP [2], 

employed Additive-Increase Multiplicative-Decrease (AIMD) 

window adjustment algorithms. A later theoretical study [3] 

confirmed, in a simple model with synchronous congestion 

signals and static bandwidth, that AIMD was the only fair and 

stable choice among the AIAD, In the past decade, due to the 

tremendous success of TCP congestion control and to the 

enduring persuasiveness of [3], the superiority of AIMD has 

become a widely accepted and deeply held belief. As a result, 

there have been very few research studies advocating, or even 

exploring, linear schemes other than AIMD. While there have 

been many papers on congestion control, most of them 

investigate algorithmic issues that fall well within the AIMD 

paradigm. Of those departing from the AIMD paradigm, the 

majority proposes either non-linear congestion control 

algorithms [4] or approaches that differ radically from TCP [5, 

6]. Notable exceptions to this statement are [7] and [8, 9] 

which propose linear control algorithms other than 

AIMD.TCP-Reno reacts fairly severely to losses. If a Reno 

flow incurs more than a few losses within a given window, it 

times out and restarts. Thus, in the past, it was important that 

the window adjustment algorithm increase its window 

conservatively to avoid multiple losses. However, much 

progress has been made on loss recovery algorithms in the 

past decade. The more modern loss recovery schemes, like 

SACK [10, 11], incur only a gentle penalty from losses since 

they can endure many packet drops within a single window 

without restarting. Hence, there may be less of a need for 

conservative window adjustment algorithms. 

 

Our simulations show that AIMD is the superior design choice 

in the traditional setting of TCP Reno loss recovery and FIFO 

drop-tail routers. AIMD is no longer superior. TCP SACK, 

active queue management techniques and fair queuing in 

routers enable the other linear alternatives to provide 

comparable and sometimes significantly better good put 
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performance. We observe that AIAD is always among the best 

linear alternatives, and can even achieve fairness as long as 

routers are not FIFO drop-tail. AIAD and also provide good 

performance. 

 

There are a few things to keep in mind when choosing a value 

for N. 

 

1: The sender must not transmit too fast. N should be bounded 

by the receiver’s ability to process packets. 

2: N must be smaller than the number of sequence numbers (if 

they are numbered from zero to N) to verify transmission in 

cases of any packet (any data or ACK packet) being dropped.  

3: Given the bounds presented in (1) and (2), choose N to be 

the largest number possible.  

 

The receiver window is one frame wide; on a frame error the 

receiver discards the frame and all subsequent fames and 

sends no ACKs. Eventually the senders will timeout and 

resend the damaged frame and all subsequent frames. This can 

waste a lot of bandwidth if the error rate is high. 
 

2 Is AIMD Clearly Superior? 

Our first question is whether AIMD is clearly superior to the 

other choices in terms of the good put achieved. For each of 

the algorithms we can find scenarios in which it performs the 

best and the worst among the algorithms. In fact, this suggests 

that special care needs to be taken in deciding which 

algorithm is the best. To maximize the usage of the available 

bandwidth, a congestion control scheme needs to balance 

between (1) tracking rapid changes of the available bandwidth, 

and (2) minimizing packet losses. The faster a sender modifies 

its window size, the faster the sender can track changes of the 

available bandwidth. On the other hand, fast and large 

changes of the window size increase the probability of the 

sender overshooting the available bandwidth, which may 

result in a large number of packets being dropped. This has 

two negative implications. First, more losses mean that more 

packets are retransmitted, and thus a higher fraction of the 

available bandwidth is devoted to retransmitting old packets. 

Second, a burst of losses can hurt the loss recovery algorithm 

by forcing it to restart. 

 

 

 
 

Figure 1: The good put seen by the various algorithms for the 

given variation is shown in the table below each plot.  

The good put, measured as the fraction of average available 

bandwidth used to transmit unique packets, is a number in [0; 

1]. The canonical congestion control schemes we consider use 

either multiplicative or additive schemes to vary the window 

size. When the available bandwidth increases slowly, an 

additive increase will likely outperform a multiplicative 

increase since it is fast enough to track the changes and is less 

likely to overestimate the available bandwidth. In contrast, a 

multiplicative increase will likely perform better when 

bandwidth increases are large and abrupt. The same reasoning 

applies to bandwidth decreases and the window decrease 

algorithms. Intuitively, this is the reason why no single 

canonical congestion control scheme would be able to 

dominate across a wide range of scenarios.  

 

Figure 1 shows two patterns of bandwidth variations. We 

measure the goodput for the two linear algorithms in these 

scenarios. The scenarios are chosen such that in each case 

there is a different algorithm that achieves the highest 

throughput. Figure 1(a) shows a saw-tooth bandwidth pattern 

under which AIMD performs the best. Com-pared to AIMD, 

the window size under AIAD decreases too slowly. As a result 

these schemes experience more losses, and consequently more 

re-transmissions than AIMD.  
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Figure 2: Bad cases for AIAD (Figure (a) and MIMD (Figure 

(b))). Notice that the y-axes are on different scales. Figure 1(b) 

shows an example in which AIAD performs the best. The 

reason for this result is somewhat more subtle. When the 

available bandwidth drops, AIAD reduces the window size 

slower than the other disciplines. While this causes AIAD to 

lose slightly more packets, the decrease of the window size is 

not enough to offset the increase of the window size during 

the previous high bandwidth period. Thus, the window size of 

AIAD increases continuously over multiple high bandwidth 

periods. In contrast, MIAD and MIMD cannot avoid timeouts 

as they constantly overshoot the available bandwidth. Finally, 

AIMD does not perform well because the window decrease 

during the low periods almost offsets the window increase 

during the high periods. AIAD suffers from the fact that it 

cannot increase the window size fast enough during the high 

periods. 

 

When the bandwidth decreases, AIAD and MIAD lose too 

many packets, and TCP SACK is no longer able to avoid 

retransmission timeouts. On the other hand, AIMD cannot 

exploit the available bandwidth as its window size increases 

too slowly during the high periods. 

 

For instance, AIMD exhibits the worst performance in the 

experiments presented in Figures 1(b), 1(c) and 1(d)). In 

Figure 2(a), both the additive increase algorithms are too slow 

to catch up with the sudden increase of the available 

bandwidth. Between AIAD and AIMD, AIAD cannot track 

the rapid decrease in the available bandwidth as well. 

 

3 Evaluation Methodology 

 

In order to meaningfully compare the algorithms, we make 

two key guiding assumptions. Our first guiding assumption is 

that congestion control algorithms should not be designed for 

any particular scenario, no matter how realistic that scenario 

may be at the time. The load model in the Internet may change 

abruptly as new applications arise or as the nature of the 

infrastructure changes. Thus, congestion control algorithms 

should be evaluated across a wide variety of scenarios. Our 

second guiding assumption is that robustness is more 

important than optimality, that is, we demand that the 

congestion control algorithm perform reasonably in most 

situations and are more concerned with its worst-case 

performance than its best-case performance. 

 

Let A be the set of congestion control algorithms that we wish 

to compare, a consists of AIMD, AIAD. Let E be the set of 

possible environments or scenarios that these algorithms 

might be faced with, where a scenario is a particular variation 

in the available bandwidth. 

 

For the particular quantity of interest -be it goodput, fairness, 

loss, or delay -let Sa(e) denote the score of algorithm a in a 

given environment e. Let Smax(e) = maxa€A {Sa(e)} denote the 

best score achieved in scenario e among the algorithms in A. 

Let da(e) = Smax(e)- Sa(e); da(e) is a measure, for a given 

environment e, of how close a comes to matching the best 

performance among the algorithms in A. Out of these per-

environment scores we define two aggregate scores. The rank 

Ca is the worst-case score among the various environments: Ca 

= maxeЄE{da(e)}. The rank measures the worst-case 

performance of the algorithm, and lower ranks represent more 

robust algorithms, those that never do particularly poorly. The 

other measure is the aggregate value Da of the differences: Da 

= ∑eЄE da(e). The lower the values of Da and Ca are, the better 

the algorithm a is, for the given metric.  

 

 
 

 

 

 

 

 Environment Variation in per-flow available 

bandwidth (Bt) 

1 Cons-low 

(CL) 

Constant at 1 Mbps 

2 Cons-High 

(CH) 

Constant at 10 Mbps 

3 Sq-low 

(SQL) 

10Mbps→5Mbps→10Mbps….., at 

regular intervals (5s) 

4 sq-high 

(SQH)  

10Mbps→1Mbps→10Mbps….., at 

regular intervals (5s) 

5 rw-low Bt+1 €  [Bt –Δ ,Bt + Δ], 
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(RWL) B0 = 1Mbps, Δ= 0:5B0 

6 rw-high 

(RWH) 

same as above except that B0 = 

10Mbps 

7 rd-low 

(RDL) 

Bt Є  [0,B0], B0 = 1Mbps 

8 rd-high 

(RDH) 

Bt Є  [0,B0], B0 = 10Mbps 

9 rw-additive 

(RWA) 

Bt+1 Є [0,Bt + Δ], B0 = 1Mbps, Δ = 

0:25B0 

10 rw-

multiplicative 

(RWM) 

Bt+1 Є  [0,μBt], B0 = 1Mbps, μ= 5/3 

11 real-cons-low 

(RCL) 

Pareto length flows arrive with 

Poisson inter-arrival times 

12 real-cons-

high (RCH) 

Same as in real-cons-low, except that 

the mean inter-arrival time is very 

low 

13 real-sq 

(RSQ) 

Mean inter-arrival time varies in a 

square manner 

 

 

3.1 Choosing the Set E of Environments 

 

In choosing the components of E, we aim to include enough 

environments to cover a wide variety of situations while still 

keeping the set small enough to be manageable. We 

deliberately choose some of the environments to be fairly 

extreme. The goal for these is not to be realistic, but to test the 

algorithms under unusually harsh conditions. We include a 

few environments that react reasonably realistic scenarios. 

Finally, we add few other environments that we hope would 

help reveal key aspects of the algorithms' behavior. The 

resulting composition for the set E is shown in Table 2. 

Most of the scenarios are on a simple topology (described 

later) where the single congested link has varying available 

bandwidth. The basic bandwidth variations we consider are 

described below (we describe the variation in per flow 

available bandwidth): 

 Constant: The available bandwidth is constant. We 

included a cons-low (CL) environment where the constant 

bandwidth is low (1Mbps) and a cons-high (CH) 

environment where the constant bandwidth is high 

(10Mbps). 

  Square-Wave: the available bandwidth undergoes square 

wave oscillations, with the band-width variations 

occurring every 5 seconds. In the sq-low (SQL) scenario, 

the bandwidth varies between 5Mbps and 10Mbps. In the 

sq-high (SQH) scenario, the bandwidth varies between 

1Mbps and 10Mbps. 

  Random Walk (RWL, RWH): Here the bandwidth varies 

according to a random walk. If the bandwidth at time t is 

Bt then the next bandwidth is chosen uniformly from the 

interval [Bt-Δ, Bt +Δ] where Δ = 0:5B0. For rw-low 

(RWL), B0 = 1Mbps and for rw-high (RWH), B0 = 

10Mbps. 

  Random (RDL, RDH): The bandwidth is chosen 

uniformly randomly from the interval [0, B0] where B0 = 

1Mbps for rd-low (RDL) and B0 = 10Mbps for rd-high 

(RDH). 

  Additive Random Walk (RWA): For the environment 

rw-additive (RWA), the available band-width is chosen 

from an additively constrained interval [18]. That is, the 

bandwidth at time t+1 is chosen uniformly at random 

from the interval [0;Bt+Δ]. Here, B0 = 1Mbps, Δ = 0:25. 

  Multiplicative Random Walk (RWM): In the 

environment rw-multiplicative (RWM), the avail-able 

bandwidth is picked from a multiplicatively constrained 

interval [18]. In other words, Bt+1 is chosen uniformly at 

random from the interval Bt+1 Є [0, μBt]. Here B0 = 

1Mbps, μ = 5=3.  

  Realistic Cross Traffic: The variation in available 

bandwidth is determined by pareto-length flows arriving 

at the bottleneck router with Poisson inter-arrival times. 

For the environment real-cons-low (RCL), the mean 

inter-arrival time is 0.03s, while for real-cons-high (RCH) 

it is 0.01s. For the environment real-sq (RSQ), the mean 

varies in a square manner between 0.03s and 0.01s, where 

the variation in mean occurs every 5 seconds. These 

scenarios were chosen to react realistic load and cross-

traffic models. 

In all the cases 1 through 10 listed in Table 2, whenever Bt 

exceeds the capacity of the link, C, we set it to C. 

 

3.2 Choosing the Set A of Algorithms 

 

For LC Є{AIMD, AIAD}, let LC(a,b) denote a linear 

congestion control scheme with an increase parameter of a 

and a decrease parameter of b. 

For each of the four linear control schemes, we would like to 

pick a single set of parameters that provides reasonable 

performance across all possible settings of loss recovery 

schemes, router algorithms and bandwidth variations. Such a 

choice would ensure two key properties: (1) the single 

algorithm in each case (for example, AIMD (1, 0.1)) would 

best summarize the overall behavior of the entire family of 

linear control schemes that the algorithm belongs to (for 

example, AIMD). (2) The single algorithm would ensure near-

optimal performance across all possible settings. In addition, 

while choosing the parameters (a; b) of such a representative 

algorithm we try to ensure that the choice does not obscure the 

core qualities of increase and decrease of each linear control 

algorithm. For example, we do not want to pick the decrease 

parameter of the candidate AIMD algorithm to be very close 

to 1, lest it should look similar to an additive decrease. Clearly, 

this property needs to hold over the entire range of sizes of the 

congestion window spanned by the bandwidth variations that 

the algorithms are exposed to. Subjectively, we list out the 

following conditions to be satisfied by the linear control 

algorithms over all possible window sizes: 

 Additive Increase (AI): The additive increase component 

should be such that at no instant of time should the 

window undergo an increment greater than about 10% the 
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current size. This serves to distinguish an additive 

increase form a multiplicative increase. 

  Additive Decrease (AD): The additive decrease 

component should be such that the decrement in the 

window should never be more 10%. This serves to 

differentiate it from a multiplicative decrease. 

 

 

 
 

Figure 3: Topology for the simulations. Figure (a) shows the 

setting for simulations where a CBR source starting on S1 was 

used to control the available bandwidth on the link R1-R2. For 

the simulations involving realistic traffic patterns, the setting 

shown in Figure (b) was used. 

From the way the bandwidth variations were chosen, it is not 

hard to see that the lowest window size to ever undergo an 

increment is about 12-15.  Similarly the lowest window size to 

ever undergo a decrement is about 25-20. Applying the above 

four conditions, we get the following permissible values for 

the parameters, approximately: 

AI < 3, AD<3, MI > 0:1 and MD < 0:9. The results of the 

comparison between the various candidate algorithms in 

classes {AIMD, AIAD} are shown in the appendix. Based on 

these results, we choose the following candidate linear control 

schemes for comparison: AIMD(1,0.8), AIAD (1,3).  

 

 

 

3.3 Simulation Set-up 

 

We use simulations in NS-2 to study the above congestion 

control schemes under the various combinations of loss 

recovery and router algorithms and against the environments 

described above. In each simulation we have n identical TCP 

test flows using the particular linear congestion control 

scheme under investigation, and we subject them to different 

variations in the available bandwidth. 

The topology used for testing with variations 1 through 10 is 

shown in Figure 3(a). To implement variations in the available 

bandwidth in these scenarios, we choose to keep the 

bandwidth of the link constant and introduce CBR-like cross-

traffic to consume varying amounts of bandwidth. If the link 

bandwidth is B and the cross-traffic consumes Bc then we say 

that the available bandwidth is Ba = B-Bc. The descriptions 

above of the bandwidth variation scenarios can be turned into 

recipes for how the cross-traffic rate should be varied. When 

testing with Drop-Tail and RED router mechanisms (at R1), 

we employ a single rate controlled CBR source (between end-

points S1 and D1) to realize the bandwidth variations 4. When 

testing with DRR schedulers, however, we use a time-varying 

number of fixed rate CBR sources (between S1 and D1). This 

is because, if we have n simultaneous TCP flows being tested, 

a single CBR source would be limited to at most 1 n+1th of 

the available bandwidth at any instant of time when DRR is 

used, and so the available bandwidth would not vary as 

desired. Hence, we vary the number of CBR flows to 

accurately implement the variation in available bandwidth. A 

simple calculation shows that to achieve an available 

bandwidth of Ba we need n(C - Ba)=Ba CBR flows, where C is 

the capacity of the link R1 � R2 and n is the number of test 

TCP flows. The test TCP flows are between Si and Di. Also, 

we randomize the round-trip times slightly to avoid 

synchronization effects. While the topology shown in Figure 

3(a) is well suited for tests in which we control available 

bandwidth directly, it is not amenable to the implementation 

of bandwidth variations 11 through 13. We use the topology 

shown in Figure 3(b) to implement variations 11 through 13. 

In what follows, we first describe the set-up in detail and then 

explain the reasons for the difference from that of Figure 3(a).  

 

TCP-SACK flows implementing AIMD with pareto-

distributed lengths and Poisson inter-arrival times run between 

nodes S0 and D. These constitute the cross traffic on the link 

R1-R2. The n test TCP flows are between nodes Si (i = 1…, n) 

and D. In addition we have n place-holder long-lived flows 

between nodes S0 and D0. The router R0 employs DRR 

scheduling. The router at R1 implements either DRR or RIO 

(explained in greater detail below). The TCP-SACK cross 

traffic is given priority over the test traffic at router R1. In 

addition, the bandwidth between R0 and R1 equals that of link 

R1-R2. While simulating the environments 11 through 13, we 

would like to ensure that the TCP flows constituting the cross-

traffic on link R1-R2 are allocated their fair-share of the R1-

R2 capacity irrespective of the congestion control algorithm 

employed by the test flows. This is ensured by using DRR at 

router R0 and using n long-lived place-holder flows between 

S0 and D0. The place-holder flows emulate the n test-flows so 
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that when the pareto-distributed TCP flows enter link R1-R2, 

their aggregate occupies no more than the fair-share. However, 

we also want the TCP flows constituting the cross-traffic to 

not incur any more losses beyond link R0-R1 since they 

already are at their fair-share upon exiting this link. This is 

ensured by: (i) using RIO at router R1 and marking the 

packets belonging to the cross traffic as high priority and (ii) 

using TCP-SACK for the cross traffic. 

When testing with the setting of Drop-tail buffers, we modify 

the parameters for the low priority packets at router R0 to 

implement Drop-tail behavior on packets belonging to the test 

flows. When testing with the DRR setting, we use a DRR 

scheduler, instead of RIO, at router R1. Notice that the flows 

belonging to the cross traffic do not incur any additional 

losses when DRR is employed at router R1. 

 

4 Results 

 

As we discussed in the Introduction, we use four metrics in 

evaluating the performance of the different congestion control 

schemes: 

 Goodput: We measure goodput as the fraction of 

available bandwidth used to transmit unique packets. The 

goodput values all lie in [0; 1].  

  Delay: The queuing delay is measured in milliseconds. 

  Loss rate: The loss rate is measured in terms of the 

percentage of packets lost (so a score of 5 indicates a 5% 

packet loss). 

  Fairness: The fairness metric is defined as (gmax-gmin )/ 

gavg where gmax, gmin and gavg are the maximum, minimum 

and average goodputs of the test flows respectively. 

 

We present the results by first describing how the rankings 

change when going from the TCP-Reno with its severe loss 

penalty to more gentle loss penalties. We then discuss the 

impact of different router drop policies and queuing behavior. 

While presenting the results, we show both Ca and Da for 

goodput. This is because these two aggregate scores show 

rather different behavior. We only present the values of Da for 

fairness, loss, and delay because the ordering of the Da values 

for these quantities is very similar to the ordering of the Ca 

values. For delay and loss, we also show the raw values as the 

absolute magnitude of delays and losses cannot be easily 

inferred from the value of Da. 

 

4.1 The Impact of Loss Recovery Algorithms 

 

TCP Reno incurs a severe penalty when recovering from 

losses; TCP SACK is more adept at handling losses and 

therefore incurs a much gentler penalty. We performed 

simulations of the congestion control algorithms with these 

two types of loss recovery (TCP Reno and TCP SACK). We 

simulated these schemes on the various scenarios; in these 

tests the routers used FIFO, drop-tail routers with buffers 

sized to match the delay-bandwidth product of the network. 

 

4.1.1 TCP Reno Loss Recovery 

 

The results for TCP Reno loss recovery are shown in Figure 

4Here, and in subsequent tables, we mark the algorithms with 

the best goodput (best values for both Ca and Da) by 

underlining them. From the results, AIMD and AIAD deliver 

roughly similar goodput in all the test environments.  

 

AIMD provides better fairness than AIAD, although AIMD is 

not perfectly fair. In addition, AIMD suffers the fewest losses, 

with MIAD suffering the most. AIMD and AIAD have the 

highest delay values. AIMD and AIAD have the highest delay 

values. To summarize, with TCP Reno loss recovery and 

FIFO drop-tail routers, AIMD and AIAD provide the best 

goodput performance. However, AIAD is not as fair. 

 

4.1.2 TCP SACK Loss Recovery 

 

Figure 5 shows the results for TCP SACK loss recovery, again 

with FIFO drop-tail routers. The absolute values (which we 

don't show in our tables) of the goodputs are significantly 

higher than with TCP Reno.  

 

5 Related Work 

 

In the past, there have been few research studies exploring 

linear alternatives to TCP's congestion control algorithms. Of 

these, two separate studies that bear similarity to our work are. 

 In this study, the increase component of the congestion 

control algorithms can be additive, multiplicative or non-

linear. The decrease component is chosen to be multiplicative. 

The paper shows via analysis that in such a fair network, 

MIMD is more responsive to congestion notifications than the 

other schemes, including AIMD. Thus [8] concludes that 

MIMD can track changes in bandwidth more effectively. This 

work differs from ours in two key aspects: firstly, additive 

decrease schemes are outside the purview of the analysis in 

[8]; secondly, the impact of loss recovery is not factored into 

the analysis. As a result, the conclusions in [8] are different, 

qualitatively, from our observations about the impact of fair-

queueing.10 (presented in Section 4.2.4): We have shown that 

while under Reno-style loss recovery AI schemes are clearly 

dominant, under SACK-style loss recovery all algorithms 

except MIAD provide identical goodput performance. 

 

In contrast, [9] employs simulations to study the relative 

performance of AIMD and AILD, where, AILD has the same 

linear increase as AIMD, but the decrease is defined by the 

following equation: 

 

wt+1 = wt-βf, where β is a constant and f is the loss ratio. Also, 

the available bandwidth is kept constant. The authors observe 

that in networks that use RED-like gateways, AILD is both 

efficient and fair and outperforms AIMD. However, the 

definition of linear decrease adopted in this study does not 

produce a linear control scheme (in the sense we've defined in 

our paper) since the drop rate f is a nonlinear function of the 

aggregate load. To the best of our knowledge, our study is the 
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first to compare all linear congestion control schemes under a 

wide variety of router configurations, different loss recovery 

schemes and a wide range of variations in available bandwidth. 

There have been other studies on congestion control 

algorithms which propose slowly adaptive alternatives to 

congestion control that are TCP-friendly and provide identical 

throughput as the current TCP under a given steady state loss 

rate. For example, [4] proposes non-linear slowly-adaptive 

window adjustment algorithms and [6] proposes rate-based 

schemes for congestion control. The issues pertaining to the 

dynamic behavior of such schemes have been partially 

addressed in [19]. Though the work presented in our paper 

does not consider such non-linear algorithms and rate-based 

schemes, we hope it provides sufficient intuition as to how 

these schemes should be evaluated in the long run. 

 

6 Summary 

 

This paper was an attempt to revisit the original design 

decision to focus exclusively on AIMD linear congestion 

control. We examined the impact of modern developments in 

loss recovery and in router algorithms on the choice of the 

linear congestion control scheme. We tested the four basic 

linear congestion control algorithms in a wide variety of 

settings. We affirm that in the traditional context of TCP Reno 

loss recovery and FIFO drop-tail routers, AIMD is clearly an 

aptly made choice. 

In particular, we have shown that AIAD is a reasonable 

alternative choice for a modern congestion control scheme. In 

fact, AIAD also provides reasonable fairness as long as 

routers do not employ FIFO drop-tail queuing. Adding a small 

multiplicative component to the additive decrease of AIAD is 

enough to ensure that fairness is guaranteed, even when FIFO 

drop-tail buffers are employed, without compromising 

goodput. 
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