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Abstract— Digital Signal Processing domain has long been dominated by software systems; however, the state of art signal processing 

is now again switching back to hardware based solutions. This requires development of algorithms that can be efficiently 

implemented on different hardware platforms. CORDIC is one such hardware-efficient algorithm that is used in DSP systems for 

calculating trigonometric, hyperbolic, logarithmic and other transcendental functions. This paper attempts to explore the different 

implementations of CORDIC architectures, specific to FPGA devices. The algorithm is implemented in two different styles: folded 

and unfolded. Unfolded design is improved architecturally by pipelining it. Comparisons are then made between these architectures 

based on area, speed, throughput and power parameters and logical conclusions are drawn. All three designs have been coded in 

VHDL and implemented using Xilinx FPGA synthesis tool. To check the functionality of the algorithm each of the designs has been 

simulated for sine and cosine function evaluations. The simulations are carried out using Xilinx ISim tool and power metrics are 

obtained using Xilinx Xpower Analyzer tool. 

Keywords— CORDIC, FPGA, Rotation mode, Unfolded architecture, Folded architecture. 

 

I. INTRODUCTION 

Digital Signal Processing has many applications such as 

digital audio broadcast, digital video, multimedia, digital 

cellular communications, image processing [1] etc. 

Traditionally dedicated architectures have been used for 

these DSP applications. These architectures are mostly 

based on general purpose microprocessors. Advancements 

such as single cycle multiply-accumulate instructions, 

special addressing modes, superscalar architectures and 

VLIW processors has led to the dominance of these 

general purpose microprocessors in the DSP landscape [2]. 

Today most of the DSP applications are based on real time 

multimedia processing. Digital representation of 

multimedia data can be handled in the same way as text; 

however the processing rate has to be much faster [1]. On 

account of this real time throughput constraint, 

conventional processors are not suitable for modern day 

DSP systems. Some hardware efficient algorithms are, 

therefore required for these high speed applications. These 

algorithms need to be implemented and optimized in 

hardware so as to enable them to handle real time data 

while maintaining an optimum trade-off between different 

performance parameters (area, speed and power). CORDIC 

is one such algorithm. 

CORDIC (COordinate Rotation DIgital Computer) [3, 4] is 

a hardware efficient shift-and-add algorithm that can be 

used to  

calculate various arithmetic functions. The algorithm has a 

very simple operation requiring only shift and add 

operations.  

 

This simplicity in operation has made CORDIC a 

competitive alternative for evaluating various 

trigonometric and hyperbolic functions required in many 

DSP applications. The original algorithm, developed by 

Jack Volder [5] was limited to trigonometric calculations. 

John Walther [6] extended the CORDIC theory and made 

it possible to calculate a large variety of trigonometric and 

other linear and hyperbolic functions. 

FPGAs are often used as co-processors to perform all the 

high speed tasks that cannot be achieved using 

conventional processors. Historically, FPGAs have been 

slower, less energy efficient and generally achieved less 

functionality than their fixed ASIC counterparts. 

Advantages include the ability to re-program in the field to 
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fix bugs, shorter time to market and lower non-recurring 

engineering costs. 

This paper attempts to implement the CORDIC algorithm 

on FPGA platforms in different styles. The different 

architectures are compared for various performance 

parameters and based on these parameters an optimum 

hardware solution for FPGAs is presented.The rest of the 

paper is organized in the following manner. Section II 

discusses the CORDIC algorithm and its operating mode 

for sine and cosine function evaluation. Section III 

discusses the folded and unfolded CORDIC architectures. 

Section IV provides the implementation and simulation 

results and based on the comparison metrics, performance 

evaluation of folded and unfolded CORDIC architectures 

is carried out. 

II.  CORDIC ALGORITHM 

The CORDIC algorithm provides an iterative method of 

performing vector rotations by arbitrary angles using only 

shift and add operations [3]. The algorithm, credited to 

Volder [5], is derived from the general (Givens) rotation 

transform:     

x'=  x cos ø – y sin ø   (1) 

y'=  x sin ø + y cos ø   (2) 

This rotates a vector in a Cartesian plane by the angle ø. 

These can be rearranged so that: 

x'= cos ø  [ x - y tan ø ]  (3) 

y'= cos ø [ y + x tan ø ]  (4) 

The rotation angles are restricted so that, tan ø = ±2
-i
. 

This reduces the multiplication operation by the tangent 

term to simple shift operation. Any given target angle ø 

can be decomposed into a sequence of smaller micro 

rotations. Thus ø is decomposed as a sequence of 

elementary rotations: 

ø =Σ αi    (5) 

 Using these basic ideas we have the basic iterative 

rotations as: 

x i+1 = cos αi  [ xi  –  yi tan αi  ]   (6) 

y i+1 = cos αi   [yi  +  xi tan αi  ]  (7)

  

The rotation angles are restricted so that: 

tan αi = ±2
-i
 

This assures that the multiplication by the tangent term is 

reduced to simple shifting operation. 

x i+1 = [ xi – yi  tan αi  ] / ( 1 + tan
2
 αi )

1/2
 

y i+1 = [ yi + xi  tan αi  ] / ( 1 + tan
2
 αi )

1/2
 

 Rearranging: 

x i+1 = [ xi – yi  (±2
-i
) ] / ( 1 + 2

-2i 
)

1/2
 

y i+1 = [ yi + xi  (±2
-i
) ] /  ( 1 + 2

-2i 
)
1/2

   

Or    

x i+1 = Ki. [ xi  –  yi .di. 2
-i
]   (8) 

      y i+1 = Ki. [ yi  +  xi .di. 2
-i
]  (9) 

    Where, 

Ki   = 1/(1+2
-2i

)
1/2

; known as  scale constant. 

                    di = ±1;  known as decision function. 

  Removing the scale constant from the iterative equations 

yields a shift-add algorithm for vector rotation.  The 

product of the Ki’s can be applied elsewhere in the system 

or treated as part of a system processing gain.  That 

product approaches 0.6073 as the number of iterations 

goes to infinity. Therefore, the rotation algorithm has a 

gain, An, of approximately 1.647. The exact gain depends 

on the number of iterations, and obeys the relation: 

An = Π [1+2
-2i

]
1/2 

 The angle accumulator adds a third difference equation to 

the CORDIC algorithm: 

z i+1 = zi – αi 

z i+1 = zi – di tan
-1

 (  2
-i 

 )              { tan αi = ±2
-

i
 } 

For a single CORDIC micro-rotation the resulting 

equations are: 

 x i+1  =  xi  –  yi .di. 2
-I   

(10) 

y i+1  =  yi  +  xi .di. 2
-I   

(11) 

z i+1  =  zi  –  di  tan
-1

 (  2
-i 

 )  (12) 

The CORDIC rotator is normally operated in one of two 

modes.  In rotation mode, the angle accumulator is 

initialized with the desired rotation angle. The rotation 

decision at each iteration is made to diminish the 

magnitude of the residual angle in the angle accumulator.  

The decision at each iteration is therefore based on the 

sign of the residual angle after each step. The CORDIC 

equations are: 

x i+1 = xi – yi .di. 2
-i
 

y i+1 =  yi + xi .di. 2
-i 

z i+1 = zi – di tan
-1

 (  2
-i 

 ), 
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Where, 

di = -1 if zi  < 0 

 +1,      otherwise 

After n iterations we are provided with following results: 

xn =  An [ x0 cosz0 – y0 sinz0 ]   (13) 

yn =  An [ y0 cosz0 + x0 sinz0 ]  (14) 

 zn  =  0     (15) 

Setting the y component of the input vector to zero 

reduces the rotation mode result to: 

 xn =  An . x0 cosz0                                            (16) 

yn =  An . x0 sinz0                                                                    (17) 

By setting x0 equal to 1/An, the rotation produces the 

unscaled sine and cosine of the angle argument z0. 

III.  CORDIC ARCHITECTURES 

In general, CORDIC architectures can be broadly 

classified as folded and unfolded, based upon the hardware 

realization of the three iterative equations [7]. A direct 

duplication of equations 10, 11 and 12 into hardware 

results in folded architecture. Folded architectures have to 

be multiplexed in time domain so that all the iterations are 

carried out in a single functional unit. This provides a 

means for trading area for speed [8] in signal processing 

architectures. One of the widely used folded architectures 

is implementing the entire CORDIC core using a word 

serial design.  

A. Folded word serial design 

A folded word serial design [4, 9], also called iterative bit-

parallel design is obtained simply by duplicating each of 

the three difference equations in hardware as shown in 

figure a. 

 
Fig. a folded word serial CORDIC 

Being a shift- add algorithm, each individual unit consists 

of an adder/subtractor unit, a shifter and a register for 

holding the computed values after each iteration. To start 

with, the initial values are fed into each branch via a 

multiplexer. The value in the z branch determines the 

operation of the adder-subtractor unit. Signals in the x and 

y branch pass through the shifter units and are then added 

to (or subtracted from) the unshifted signal in the opposite 

path. The z branch arithmetically combines the register 

values with the values taken from a lookup table whose 

address is changed according to the number of iteration. 

The result of this operation determines the nature of 

operation for the next iteration. After n iterations the 

results are directly read from the adder/subtractor units. A 

finite state machine is used to keep a track of shifting 

distances and the ROM addresses. Since the 

adder/subtractor unit and the shifters in each path are 

shared on time basis this conventional approach of 

implementing the CORDIC algorithm is not suitable for 

high speed applications [4]. Another disadvantage is with 

respect to the shift operations. When implemented in 

hardware the shifters have to change the shift distance with 

the number of iteration. For large number of iterations 

these require a high fan in and reduce the maximum speed 

for the application [2, 4].These shifters do not map well 

into FPGA architectures and if implemented require 

several layers of logic. The result is a slow design that uses 

large number of logic cells. In addition the output rate is 

also limited by the fact that the operation is performed 

iteratively and therefore the maximum output rate equals 

1/n times the clock rate, where n is the number of 

iterations. 

B. Unfolded parallel design 

The iterative nature of the CORDIC processor discussed 

above demands that the processor has to perform iterations 

at n times the data rate.  The iteration process can be 

unfolded [9, 10] so that each of n processing elements 

always performs the same iteration. A direct application of 

the unfolding transformation is to design parallel 

processing architectures from serial processing 

architectures. At the word level, this means that word-

parallel architectures can be designed from word-serial 

architectures [1]. An unfolded CORDIC processor is 

shown in figure b 

 
Fig. b Unfolded CORDIC design 

Unfolding the CORDIC processor results in two 

significant changes. First, the shifter in each unit is of 

fixed shift i.e. it has to perform a constant shifting 

operation in each stage. Thus the shifter needs not to be 

updated as in the iterative structure. This makes their 
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implementation in FPGAs quite feasible. Second, the 

unfolding process eliminates the use of ROM from the 

processor which was required to hold the constant angle 

values during each iteration. Those constants can be 

hardwired instead of requiring storage space.  The entire 

CORDIC processor is thus reduced to an array of 

interconnected adder- subtraction units.  The need for 

registers is also eliminated, making the unrolled processor 

strictly combinatorial. Another advantage of the unrolled 

design is that the processor can be easily pipelined [11] by 

inserting registers between the adder-subtraction units.  In 

the case of most FPGA architectures there are already 

registers present in each logic cell, so the addition of the 

pipeline registers has no additional hardware cost.  

 

IV.  IMPLEMENTATION AND RESULTS 

A. Methodology 

 

The CORDIC processor is implemented in seven stages 

and for a word length of 16 and 32 bits. The initial design 

entry is done using VHDL. The design translation is 

carried out in Xilinx ISE 12.4 [12]. The simulator database 

is then analyzed for different performance parameters and 

logical conclusions are drawn. The core is implemented 

with the following synthesis description: 

Platform: FPGA 

Family: Virtex5 

Target device: XC5VLX30 

Package: FF324 

Figure c shows the generated RTL schematic of the folded 

CORDIC for one iteration. Figure d shows the RTL 

schematic for one stage of unfolded CORDIC. 

 
Fig. c RTL schematic of Folded CORDIC 

 
Fig. d RTL schematic of Unfolded CORDIC  

B. Simulations 

The generated core has been simulated for sine and cosine 

functions by operating it in the rotation mode. Figure e 

shows the simulated sine and cosine values of certain 

angles calculated using 16-bit iterative CORDIC. Figure f 

and figure g shows the simulated sine and cosine values 

calculated using parallel and pipelined designs respectively. 

 
Fig. e Simulation result for 16-bit Folded CORDIC 

 
Fig. f Simulation result for 16-bit Unfolded parallel CORDIC 

 
Fig. g Simulation result for 16-bit Unfolded  pipelined CORDIC 

 

C. Analysis and Results 

The folded and unfolded structures are analyzed for 

different performance parameters. Table 1 provides latency 
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comparison for the two structures. All the structures are 

implemented with the same synthesis description. 

TABLE 1 LATENCY COMPARISON FOR16 AND 32-BIT CORDIC  

Parameter 

CORDIC architectures. 

Folded Unfolded 

16 Bit 32 Bit 16 Bit 32 Bit 

Logic delay. 5.594ns 6.959ns 5.804 ns 9.18 ns 

Route delay. 
25.023n

s 

33.071n

s 
18.69 ns 25.0 ns 

Max. 

Combinational 

delay. 

33.078n

s 

42.414n

s 

24.472n

s 
34.2 ns 

 

Table 2 gives the maximum operating frequency 

comparison of the folded, unfolded and pipelined 

structures for word lengths of 16 and 32 bits. 

TABLE 2 THROUGHOUT COMPARISON FOR16 AND 32-BIT 

CORDIC  

Parame

ter 

CORDIC architectures. 

Folded 
Unfolded 

(parallel) 

Unfolded 

(pipelined) 

16 Bit 32 Bit 
16 

Bit 
32 Bit 16 Bit 32 Bit 

Max. 

operati

ng 

freque

ncy 

 

216.5

7MHz 

125.2

7 

MHz 

44.2

9 

MH

z 

31.67 

MHz 

232.6 

MHz 

163.43 

MHz 

 

It is observed that when timing response of the CORDIC 

structures is concerned, the unfolded architecture has less 

worst-case delay compared to the folded structure. This is 

due to the unfolding process which eliminates the use of 

storage registers and thus the corresponding set-up and 

hold times. The overall latency is thus reduced by a factor 

proportional to these set-up and hold times. Note, however 

that the maximum operating frequency and thus the 

throughput of the unfolded CORDIC is determined by the 

worst case delay of the structure. This is because the 

structure is purely combinatorial. Contrast to this, the 

folded structure can be clocked at high frequencies 

resulting in large operating frequencies. However, 

pipelining the unfolded CORDIC makes it possible to 

process multiple inputs simultaneously, thereby increasing 

the maximum operating frequency of the unfolded 

structures. For an N stage CORDIC core, N stage pipeline 

can give maximum result. The first output of an N-stage 

pipelined CORDIC core is obtained after N clock cycles. 

Thereafter, outputs will be generated after every clock 

cycle. Further analysis of CORDIC is carried out by 

comparing the power consumption for 32 bit word length. 

Table 3 gives the power consumption for the three 

structures. 

 
 
 

 

 
 

 

 

TABLE 3 POWER COMPARISON FOR 32-BIT CORDIC  

Instance 

(resource) 

CORDIC architectures. 

Folded 
Unfolded 

(parallel) 

Folded 

(pipelined) 

power 

( clock) 
21.32 mW -- 17.75 mW 

power 

( logic) 
2.15 mW 13.87 mW 9.20 mW 

power 

( signals) 
15.71 mW 11.01 mW 12.33 mW 

power ( IOs) 93.60  mW 196.07 mW 196.64 mW 

power 

( leakage)/ 

quiescent 

380.99 mW 382.30 mW 382.21 mW 

dynamic 

power 
132.78 mW 220.95mW 235.92 mW 

total power 

dissipation 
513.77 mW 603.25 mW 618.13 mW 

 

Folded structures have less power dissipation compared to 

the parallel and pipelined structures. The power consumed 

by logical components in case of folded structures is quite 

low. This is due to the fact that the folded structure uses 

the same components repetitively. Similarly due to the 

multiple input/output   instantiations in unfolded structures 

the power consumed by the input and output resources is 

quite high resulting in high dynamic power dissipation in 

the parallel and pipelined designs. Finally the three designs 

are analyzed for area consumption in terms of resource 

utilization and the results are tabulated in table 4 below 

 

TABLE 4 AREA COMPARISON FOR 32-BIT CORDIC  

parameter 

CORDIC architectures. 

Folded 
Unfolded 

(parallel) 

Folded 

(pipelined) 

No. of Registers 768 
-- 

678 

No. of  LUTs 287 1093 1006 

 No. of logic 

blocks used 285 1093 1006 

No. of occupied 

Slices 121 589 336 

No. of LUT Flip 

Flop pairs used 768 1093 1013 

No. of bonded 

IOBs 193 193 194 

 

As expected, the folded structure is an efficient user of 

logic since the same logical units are used over every 

iteration. But since the results need to be fed back after 

every iteration a large number of registers are used in the 

folded word serial implementation. 
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V.  CONCLUSION 

This paper carried out the performance analysis of the folded 

and unfolded CORDIC architectures. The implementation was 

targeted for FPGA devices. The resulting structures showed 

differences in the way of using resources available in the 

target FPGA device. The unfolded and fully pipelined design 

uses the resources extensively but shows the best latency per 

sample and thus maximum throughput rate. The folded word 

serial design uses less on-chip resources but has a large 

latency per sample. Thus these are not suitable for high speed 

DSP applications. To sum up, a judicious trade-off between 

area, power and throughput parameters, and the intended 

application will determine the correct approach for 

implementing the CORDIC algorithm. Moreover the selected 

approach will have no effect on the precision of the results, as 

the precision is a function of number of iterations (in case of 

folded design) or number of stages (in case of unfolded design) 

in the CORDIC core and not the approach used to implement 

the core.    
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