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Abstract: In this paper we proposed to improve channels transmission rate but different time-invariant error rates. By assuming the 

Gilbert–Elliott model (GEM) for each channel and TCP for high speed. The additive increase/multiplicative-decrease (AIMD) 

algorithm is a feedback control algorithm best known for its use in TCP Congestion Avoidance. AIMD combines linear growth of the 

congestion window with an exponential reduction when congestion takes place. Multiple flows using AIMD congestion control will 

eventually converge to use equal amounts of a contended link. The related schemes of multiplicative-increase/multiplicative-decrease 

(MIMD) and additive-increase/additive-decrease (AIAD) do not converge. We extend our analysis to time-varying channels. We 

compute the probability mass functions of the sequencing buffer occupancy and the sequencing delay for time-invariant channels. Our 

approach is based on the logarithm of the window size evolution has the same behaviour as the workload process in a standard G/G/1 

queue. The Laplace-Stieltjes transform of the equivalent queue is then shown to directly provide the throughput of the congestion 

control algorithm (CCA) and the higher moments of the window size. 
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1. INTRODUCTION: 

Go-Back-N ARQ is a specific instance of the automatic 

repeat request (ARQ) protocol, in which the sending process 

continues to send a number of frames specified by a window 

size even without receiving an acknowledgement (ACK) 

packet from the receiver. It is a special case of the general 

sliding window protocol with the transmit window size of N 

and receive window size of 1. 

 

The receiver process keeps track of the sequence number of 

the next frame it expects to receive, and sends that number 

with every ACK it sends. The receiver will ignore any frame 

that does not have the exact sequence number it expects – 

whether that frame is a "past" duplicate of a frame it has 

already ACK'ed [1] or whether that frame is a "future" frame 

past the last packet it is waiting for.  

 

Once the sender has sent all of the frames in its window, it 

will detect that all of the frames since the first lost frame are 

outstanding, and will go back to sequence number of the last 

ACK it received from the receiver process and fill its window 

starting with that frame and continue the process over again. 

 

There are a few things to keep in mind when choosing a 

value for N. 

1: The sender must not transmit too fast. N should be 

bounded by the receiver’s ability to process packets. 

2: N must be smaller than the number of sequence numbers 

(if they are numbered from zero to N) to verify transmission 

in cases of any packet (any data or ACK packet) being 

dropped.  

3: Given the bounds presented in (1) and (2), choose N to 

be the largest number possible.  

 

The receiver window is one frame wide; on a frame error 

the receiver discards the frame and all subsequent fames and 

sends no ACKs. Eventually the senders will timeout and 

resend the damaged frame and all subsequent frames. This can 

waste a lot of bandwidth if the error rate is high. 
 

 

http://www.ijarcsse.com/
http://en.wikipedia.org/wiki/Automatic_repeat_request
http://en.wikipedia.org/wiki/Automatic_repeat_request
http://en.wikipedia.org/wiki/Automatic_repeat_request
http://en.wikipedia.org/wiki/Data_frame
http://en.wikipedia.org/wiki/Acknowledgement_(data_networks)
http://en.wikipedia.org/wiki/Sliding_window_protocol
http://en.wikipedia.org/wiki/Go-Back-N_ARQ#cite_note-KuroseRoss-0
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Following figure shows a Go-back-N ARQ protocol; for 

simplicity the sequence numbers are shown as continuously 

ascending. Sequence number 2 is received with an error and 

discarded and all subsequent frames are discarded (sequence 

numbers 3 to 5). Eventually sequence number 2 timeouts and 

is resent together with all subsequent frames.  

 

(a) The sender must store a message and all subsequence 

messages until an ACK arrives for the first,  

    (b) The receiver only needs to store a single frame which 

can then be passed to the host. 

 

Although that are MaxSeq + 1 sequence numbers (0 to 

MaxSeq) only MaxSeq frames can be outstanding at any time. 

 

Consider the case where a three bit sequence number is 

being used with sequence numbers ranging from 0 to 7 and we 

can have 8 frames outstanding:  

The sender sends frames 0 to 7  

The receiver receives each frame (0 to 7) in turn and passes 

message to the host, advances its window and sends an ACK  

The ACKs for frames 0 to 7 are all lost (lightning strike on 

comms line)  

The receiver is now expecting frame sequence number 0  

After timeout the sender resends frames 0 to 7  

The receiver thinks these are the next 8 frames and passes 

them to the host, etc.  

To avoid this gap is introduced in the sequence numbers to 

ensure no overlap, ie:  

The sender sends frames 0 to 6.  

The receiver receives each frame (0 to 6) in turn and passes 

message to the host, advances its window and sends an ACK . 

The ACKs for frames 0 to 6 are all lost (lightning strike on 

comms line).  

The receiver now is expecting frame sequence number 7.  

After timeout the sender resends frames 0 to 6 . 

The receiver discards all these frames (outside its window) 

but sends ACKs. 

The sender gets ACKs for 0 to 6 and sends frame 7, etc. 
 

2. THE MODEL 

 

The approach taken is to increase the transmission rate 

(window size), probing for usable bandwidth, until loss occurs. 

The policy of additive increase may, for instance, increase the 

congestion window by a fixed amount every round trip time. 

When congestion is detected, the transmitter decreases the 

transmission rate by a multiplicative factor; for example, cut 

the congestion window in half after loss. The result is a saw-

tooth behavior that represents the probe for bandwidth. 

AIMD requires a binary signal of congestion. Most 

frequently, packet loss serves as the signal; the multiplicative 

decrease is triggered when a timeout or acknowledgement 

message indicates a packet was lost. It is also possible for in-

network mechanisms to mark congestion (without discarding 

packets) as in Explicit Congestion Notification (ECN). 

 

Let w(t) be the sending rate (e.g. the congestion window) 

during time slot t, a (a > 0) be the additive increase factor, and 

b (0 < b < 1) be the multiplicative decrease factor. 

 
In TCP, after slow start, the additive increase factor a is 

typically one MSS (maximum segment size) per round-trip 

time, and the multiplicative decrease factor b is typically 1/2. 

3. ANALYSIS: 

 

Consider the following discrete time stochastic recursive 

equation Wn+1 = max (AnWn,1)…. (1) The process, {Wn}, 

can be viewed as a sequence of observations of a continuous 

time process sampled at certain, not necessarily equal, time 

intervals. The sequence An 2 (0, 1) is assumed to be stationary 

and ergodic. Taking the logarithm of equation (3), we obtain  

log[Wn+1] = max(log[An] + log[Wn], 0).  

Using the substitutions Yn = log[Wn], and Un = log[An] in 

the above equation, we obtain  

Yn+1 = max (Yn + Un , 0)…. (2)  
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We now make the following observation: The recursive 

equation (4) has the same form as the equation describing the 

workload process in a G/G/1 queue observed at, say, just after 

an arrival Un denotes the 5 difference between the service 

time of the nth customer and the inter arrival time between the 

nth and the (n + 1) th customer. Since the introduced 

transformation, log(·), is invertible, there is a one to one 

correspondence between the processes {Yn, n ¸ 0} and {Wn, n 

¸ 0}. This observation allows us to study the stability of the 

window process {Wn, n ¸ 0} via that of {Yn, n ¸ 0}. 

Furthermore, the analogy with queuing theory of the process 

{Yn, n ¸ 0} allows us to obtain the steady state moments of 

Wn. Theorem 3.1 Assume that E [logA0] < 0. Then there 

exists a unique stationary ergodic process  

{W * n}, defined on the same probability space as {Wn}, 

that satisfies the recursion (1).Moreover, for any initial value 

W0 = w, there is a random time Tw, which is finite with 

probability 1, such that Wn = W * n for all n >= Tw. If E 

[logA0] > 0 then Wn tends to infinity w.p.1 for any initial 

value W0 = w. The log transformation allows us to obtain the 

moments of Wn in the stationary regime (i.e., moments of 

W*n) from the Laplace-Steiltjes Transform (LST) of Y*n in 

the stationary regime (i.e., LST of Y * n ). The LST of Y * n 

is given by   G(s) = E [e - 
sY *n

 ]…(4) which is defined for s 2 

S, where S is the region of convergence of G(s). For a given 

integer k ¸ 0, the kth moment of W* n is obtained as follows  
E[(W*n)k] = E[exp(kY *n )] = G(−k)….(5) where −k is assumed 

to belong to S. If −k 62 S then the corresponding moment is 1. Thus, 

all finite moments of W* n can be obtained from the LST of Y * n . 

A similar analysis can be done for the stochastic recursive equation  

Wn+1 = min(AnWn,B)….(6) by making the transformation Yn = 

log[B]−log[Wn]. The moments of W*n can then be obtained from 

the LST of Y * n using the relation E[(W*n)k] = E[Bk exp(−kY *n )] 

= BkG(k)…..(7)All the moments of W*n are finite since G(s) is 

finite for s ¸ 0.The recursive equation for model (i), as given by (1), 

is similar to equation(3). Therefore, the analysis of this model can be 

done along the lines of the analysis of (3). Similarly, the analysis of 

models (ii) and (iii) can be done along the lines of the analysis of (6). 

We note that the analysis of model (iii) is similar to that of model (ii). 

The equivalent queuing system of model (iii) can be obtained by 

deleting the idle periods of the equivalent queuing system of model 

(ii). The throughput of the AIMD algorithm, or the first moment of 

the window size, under different models, can be obtained from 

equation (5) and (7). These two assumptions allow us to use a 

discrete state space, S = {0, 1, 2, ...} for Yn. Thus, Yn can be 

modeled as a discrete state space Markov chain. The state Yn = i 

corresponds to Wn = Bl®i. The transition probabilities for this model 

are shown in Figure 2. Let Pn(j), j 2 S, be the probability of Yn being 

in state j at the end of the nth RTT. The probability of being in state j 

at the end of the (n + 1)th RTT is given by  

Pn+1(j) = (1 − p)Pn(j − 1) + pPn(j + k), j >=1 ,p Pk i=0 Pn(i), j = 

0…..(8)   

 

Denote the z-transform of Yn by Yn(z). Yn(z) is defined as Yn(z) 

= ∑ Pn(j)zj.(9)  

             j=0 

4. EXPERIMENTAL EVALUATION: 

Upper Bound on Window Size and Window Dependent 

Random Losses: The probability of a loss in an RTT was 

independent of the window size in that RTT. In this section, 

we consider a model in which the losses in an RTT depend on 

the window size in that RTT. Specifically, we assume that 

each packet is dropped (or, equivalently, is in error) with a 

constant probability q. As a consequence of this assumption, 

the probability of packet drops in an RTT is no longer 

independent of the window size in that RTT. First, we present 

the model with window dependent losses. Then we propose an 

approximation to this model which will enable us to compute 

the throughput in the window dependent model using the 

expression for throughput in the window independent model 

(model (ii)).  In each RTT, the window is reduced only once 

even in the presence of multiple packet drops. Loss recovery 

mechanisms of the recent TCP flavours such as New Reno 

and SACK. let Wn be the window size in the nth RTT. Let pn 

be the probability that the window is reduced in the nth RTT. 

Then, pn is given by pn = 1 − (1 − q)Wn…..(9) The window 

size evolution for this model can be written as Wn+1 = 

min(AnWn,Bu), where Bu is the upper bound on the window 

size, and An is now given by  

An =α w.p. 1 − pn,¯β w.p. pn..…(10) 

 

5. SIMULATION RESULT: 

 

Scalable TCP was proposed as a modification to the 

existing standard TCP for high speed networks. In the 

congestion avoidance phase, Scalable TCP uses the following 

algorithm to update the sender’s window at the end of every 

RTT: Wn+1 = 1.01 ×Wn if no losses are detected during the 

nth RTT,Wn+1= 0.875 ×Wn if one or more losses are 

detected during the nth RTT. As mentioned in the 

Introduction, Scalable TCP is an instance of AIMD protocols, 

and therefore, we validate our models by performing 

simulations with Scalable TCP. The simulation are performed 

using Ns-2.The simulation setup has a source and a 

destination node. The source node has infinite amount of data 

to send and uses Scalable TCP with New Reno flavor. The 

link bandwidth is 150 Mbps and the two way propagation 

delay is 120 ms. The window at the source is limited to 500 

packets to emulate the receiver advertised window. The BDP 

for this system is approximately 2250 packets (packet size is 

1040 bytes). In the Scalable TCP we have implemented in ns-

2, the following assumptions are made: • the minimum 

window size, Bl, is 8. The growth rate of Scalable TCP is very 

small for small window sizes. It has been use the Scalable 

algorithm after a certain threshold. • There is no separate slow 

start phase since slow start can be viewed as a multiplicative 

increase algorithm with α = 2. • For each positive ACK 

received, the window is increased by α − 1 packets. When a 

loss is detected, the window is reduced by a factor of β. α is 

taken as 1.01 and β is taken as 0.86. This value of β gives k = 

−log[β]/ log[α] =15. We set α and β in this way so as to be 

close to the values recommended in (α = 1.01, β = 0.875). 
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E [Wn] = 8n a/ a − n, respectively. In the simulations, the 

density function of W is obtained by sampling the window at 

an interval of RTT = 0.12s. We would like to note that the 

RTT is very close to the propagation delay in the present 

setting, and does not vary much. This results in a small 

discrepancy between the simulations and the theoretical 

function. The throughput in (TCP packets)/RTT as a function 

of the loss rate, p. The error bars are the 99% confidence 

intervals. Figure 8 shows the throughput in (TCP 

packets)/RTT as a function of the loss rate, p, for the model in 

which the maximum window at the sender is limited by the 

receiver’s advertised window. The receiver buffer is assumed 

to be limited to 500 packets. The error bars are the 99% 

confidence intervals. A good match is observed between the 

simulations and the analysis 

 
two regions where model (i) and model (ii) are valid, 

respectively. As per approaches 1/(k + 1) from either 

direction, the approximate models (i) and (ii) diverge from the 

simulation results. However, model (i) gives a good estimate 

when (k + 1) p >> 1, i.e., p >> 0.625 (k = 15 in the 

simulations). Similarly, model (ii) gives a good approximation 

of the system when p << 0.625. The exact model fits well 

throughout the range of p. The throughput for model (i) is 

plotted for p ¸ 0.068 because a (in equation (18)) is > 1 for 

p>=0.0673. 

 

6. CONCLUSION: 

 

On Go-Back-N ARQ protocol logarithm of the window 

size process of a connection using the AIMD congestion 

control algorithm is equivalent to the workload process in a 

G/G/1queue. The throughput of the connection and the higher 

moments of the window size process can be computed using 

the Laplace-Stieltjes transform of the equivalent workload 

process. For window independent losses, an exact expression 

can be obtained for the steady state probability distribution of 

the window size, and the throughput of the connection. In 

Future For window dependent losses an approximate 

expression, analogues to the square root formula for standard 

TCP, can be used to compute the throughput as well as SISD 

or MISD can be applied for calculating error rate for single 

and multiplicative channels when selective sequential queues 

are approached. 
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