
 Volume 2, Issue 2, February 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

A REVIEW ON QUERY CLUSTERING ALGORITHMS

FOR SEARCH ENGINE OPTIMIZATION
Bhupesh Gupta

 1
 Sandip Kumar Goyal

 2
Ashish Oberoi

3

CSE Deptt., MMUniversity CSE Deptt., MMUniversity CSE Deptt., MMUniversity

Mullana, India Mullana, India Mullana, India

Abstract — Classification of patterns into groups in unsupervised way represents clustering. Clustering can be done in many ways and

by researchers in many disciplines, like clustering can be done on the basis of queries submitted to search engine. This paper provides

an overview of algorithms which are helpful in search engine optimization. The algorithms discuss are BB’s Graph Based Clustering

Algorithm, Concept Based Clustering Algorithm and Personalized Concept based clustering algorithm. All the algorithm works on

the basis of precision and recall values, which are helpful in determine the efficiency of search engine queries.

Keywords — Concept based clustering, Query Clustering, Search Engine, Personalization, Query Optimization.

I. INTRODUCTION

 Query clustering is a technique for discovering similar

queries on a search engine. Also it is a class of techniques

aiming at grouping users’ semantically related, not

syntactically related, queries in a query repository, which were

accumulated with the interactions between users and the

system. The driving force of the development of query

clustering techniques comes recently from the requirements of

modern web searching. The three main applications of query

clustering are detection of frequently asked questions, index

term selection and query reformulation. The query clustering

comes out in following types: Content-based Query

Clustering, Session-based Query Clustering, Graph-based

Query Clustering, Concept-based Query Clustering and

Personalized concept based query clustering.

II. RELATED WORK

Query clustering techniques have been developed in

diversified ways. The very first query clustering technique

comes from information retrieval studies [1]. Similarity

between queries was measured based on overlapping

keywords or phrases in the queries. Each query is represented

as a keyword vector. Similarity functions such as cosine

similarity or Jaccard similarity [1] were used to measure the

distance between two queries. One major limitation of the

approach is that common keywords also exist in unrelated

queries.

Wen et al. [2] proposed a clustering algorithm combining both

query contents and URL clicks. They suggested that two

queries should be clustered together, if they contain the same

or similar terms, and lead to the selection of the same

documents. However, since Web search queries are usually

short and common clicks on documents are rare (see

discussion below), Wen et al.’s method may not be effective

for disambiguating Web queries. In contrast, our approach

relates the queries with a set of extracted concepts in order to

identify the precise semantics of the search queries.

Joachims [4] proposed a method which employs preference

mining and machine learning to model users’clicking and

browsing behavior. Joachims’ method assumes that a user

would scan the search result list from top to bottom. If a user

has skipped a document di at rank i before clicking on

document dj at rank j, it is assumed that he/she must have scan

the document di and decided to skip it. Thus, we can conclude

that the user prefers document dj more than document di (i.e.,

dj <r0 di, where r0 is the user’s preference order of the

documents in the search result list).

Baeza-Yates et al. [7] proposed a query clustering method that

groups similar queries according to their semantics. The

method creates a vector representation Q for query q, and the

vector Q is composed of terms from the clicked documents of

q. Cosine similarity is applied to the query vectors to discover

similar queries.

More recently, Zhang and Nasraoui [10] presented a method

that discovers similar queries by analyzing users’ sequential

search behavior. The method assumes that consecutive queries

submitted by a user are related to each other. The sequential

search behavior is combined with a traditional content based

http://www.ijarcsse.com/

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

similarity method to compensate for the high sparsity of real

query log data.

On Web search engines, clickthrough data is a kind of implicit

feedback from users. it is a valuable resource for capturing the

user’s interest for building personalized Web search systems

[4]-[6], [8]-[9], [11]-[15]. Joachims [4] proposed a method

that employs preference mining and machine learning to re

rank search results according to user’s personal preferences.

Later on, Smyth et al. [8] suggested that user search behavior

is repetitive and regular. They proposed to re rank search

results such that the results that have been previously selected

for a given query are promoted ahead of other search results.

Ng et al. [16] proposed an algorithm which combines a spying

technique together with a novel voting procedure to determine

users’ document preferences from the clickthrough data. They

also employed the RSVM algorithm to learn the user behavior

model as a set of weight features. More recently, Agichtein et

al. [17] suggested that explicit feedback (i.e., individual user

behavior, clickthrough data, etc.) from search engine users is

noisy. One major observation is the bias of user click

distribution toward top ranked results. To resolve the bias,

Agichtein suggested cleaning up the clickthrough data with

the aggregated “background” distribution. RankNet [18], a

scalable implementation of neural networks, is then employed

to learn the user behavior model from the cleaned click

through data.

III. QUERY CLUSTERING ALGORITHMS

How to choose query clustering algorithm Choosing an

appropriate clustering algorithm is also very critical to the

effectiveness and efficiency of the query clustering process.

While choosing the clustering algorithm, the following things

must be kept in mind:

The algorithm should be capable of handling a large data set

within reasonable time and space constrained.

The algorithm should be easily extended to cluster new

queries incrementally.

The algorithm should not require manual setting of the

resulting form of the clusters.

If user interested in only finding FAQs, then algorithm should

filter out those queries with low frequencies.

Based upon above assumptions we have following query

clustering algorithms:

A. BB’s Graph Based Clustering Algorithm

In BB’s graph-based clustering [3], a query-page bipartite

graph is first constructed with one set of the nodes

corresponding to the set of submitted queries, and the other

corresponding to the sets of clicked pages. If a user clicks on a

page, a link between the query and the page is created on the

bipartite graph. After obtaining the bipartite graph, an

agglomerative clustering algorithm is used to discover similar

queries and similar pages. During the clustering process, the

algorithm iteratively combines the two most similar queries

into one query node, then the two most similar pages into one

page node, and the process of alternative combination of

queries and pages is repeated until a termination condition is

satisfied. The main reason for not clustering all the queries

first and then all the pages next are that two queries may seem

unrelated prior to page clustering because they link to two

different pages but they may become similar to each other if

the two pages have a high enough similarity to each other and

are merged later. The example in Fig. 1 helps illustrate this

scenario. To compute the similarity between queries or

documents on a bipartite graph, the algorithm considers the

overlap of their neighboring vertices as defined in the

following equation:

Sim(x,y)= |N(x) ∩ N(y)|/|N(x) U N(y)|

if |N(x) U N(y)| >0,

 0, otherwise

where N(x) is the set of neighboring vertices of x, and N(y)is

the set of neighboring vertices of y. Intuitively, the similarity

function formalizes the idea that x and y are similar if their

 respective neighboring vertices largely overlap and vice

versa.

Fig.1 Queries q1 and q3 seem unrelated before document clustering.(b) After

document clustering, queries q1 and q3 are then related to each other because

they are both linked to the document cluster (d1; d2).

B. Concept Based Clustering Algorithm

1 Clustering on Query Concept Bipartite Graph: We now

describe our concept-based algorithm (i.e.,BB’s algorithm

using query-concept bipartite graph) for clustering similar

queries. Similar to BB’s algorithm, our technique is composed

of two steps: 1) Bipartite graph construction using the

extracted concepts and 2) agglomerative clustering using the

bipartite graph constructed in step 1.

Using the extracted concepts and clickthrough data, the first

step of our method is to construct a query-concept bipartite

graph, in which one side of the vertices correspond to unique

queries, and the other corresponds to unique concepts. If a

user clicks on a search result, concepts appearing in the web-

snippet of the search result are linked to the corresponding

query on the bipartite graph. Algorithm1 shows the first step

of our method.

Algorithm 1 Bipartite Graph Construction

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

Input: Clickthrough data CT, Extracted Concepts E

Output: A Query-Concept Bipartite Graph G

1: Obtain the set of unique queries Q = {q1,q2,q3…….} from

CT

2: Obtain the set of unique concepts C = {c1,c2,c3…….}from

E

3: Nodes (G) = Q U C where Q and C are the two sides in G

4: If the web-snippet s retrieved using qi єQ is clicked by a

user, create an edge e= (qi,cj) in G, where cj is a concept

appearing in s.

After the bipartite graph is constructed, the agglomerative

clustering algorithm is applied to obtain clusters of similar

queries and similar concepts. The noise-tolerant similarity

function (recall (2)) is used for finding similar vertices on the

bipartite graph G. The agglomerative clustering algorithm

would iteratively merge the most similar pair of white vertices

and then merge the most similar pair of black vertices and so

on. We present the details in Algorithm 2.

Algorithm 2 Agglomerative Clustering

Input: A Query-Concept Bipartite Graph G

Output: A Clustered Query-Concept Bipartite Graph G
c

1: Obtain the similarity scores for all possible pair’s of queries

in G using the noise-tolerant similarity function given in (2).

2: Merge the pair of queries (qiqj) that has the highest

similarity score.

3: Obtain the similarity scores for all possible pair’s of

concepts in G using the noise-tolerant similarity f unction

given in (2).

4: Merge the pair of concepts (ci; cj) that has the highest

similarity score.

5. Unless termination is reached, repeat steps 1-4.

2 Personalized Concept based clustering: We now explain the

essential idea of our personalized concept-based clustering

algorithm with which ambiguous queries can be clustered into

different query clusters. Personalized effect is achieved by

manipulating the user concept preference profiles in the

clustering process. An example is shown in Fig. 2a. We can

see that the query “apple” submitted by users User1 and User3

become two vertices “appleUser1” and “appleUser3.” If User1

is interested in the concept“apple store,” as recorded in the

concept preference profile, a link between the concept “apple

store” and the query “apple(User1)” would be created. On the

other hand, if User3is interested in the concept “fruit,” a link

between the concept “fruit” and “apple(User3)” would be

created. After the personalized bipartite graph is created, our

initial experiments revealed that if we apply BB’s algorithm

directly on the bipartite graph, the query clusters generated

will quickly merge queries from different users together, thus

losing the personalization effect. We found that identical

queries, though issued by different users and having different

meanings, tend to have some generic concept nodes such as

“information” in common, e.g., “apple(User1)” and

“apple(User3)” both connect to the “information” concept

node in Fig. 2a. Thus, these query nodes will likely be merged

in the first few iterations and cause more queries from

different users to be merged together in subsequent iterations.

Considering Fig. 2a again, if “apple(User1)” and

“apple(User3)” are merged, the next iteration will merge the

concept nodes “applestore,” “fruit,” and “information.” When

the clustering algorithm goes further, queries across users will

be further clustered together. At the end, the resulting query

clusters have no personalization effect at all. To resolve the

problem, we divide clustering into two steps. In the initial

clustering step, an algorithm similar to BB’s algorithm is

employed to cluster all the queries, but it would not merge

identical queries from different users. After obtaining all the

clusters from the initial clustering step, the community

merging step is employed to merge query clusters containing

identical queries from different users. We can see from Fig. 2d

that “apple(User1)” and “apple(User3)” belong, correctly, to

different clusters. Algorithm 3 shows the details of the

personalized clustering algorithm. Similar to the BB’s

algorithm, a query-concept bipartite graph is created as input

for the clustering algorithm. The bipartite graph construction

algorithm is similar to Algorithm 1, except each individual

query submitted by each user is treated as an individual vertex

in the bipartite graph.

Algorithm 3 Personalized Agglomerative Clustering

Input: A Query-Concept Bipartite Graph G

Output: A Personalized Clustered Query-Concept

Bipartite Graph G
p

// Initial Clustering

1: Obtain the similarity scores in G for all possible pairs of

queries using the noise-tolerant similarity function given in

(2).

2: Merge the pair of most similar queries (qi, qj) that does not

contain the same queries from different users.

3: Obtain the similarity scores in G for all possible pairs of

concepts using the noise-tolerant similarity function given in

(2).

4: Merge the pair of concepts (ci,cj) having highest similarity

score.

5. Unless termination is reached, repeat steps 1-4.

// Community Merging

6. Obtain the similarity scores in G for all possible pairs of

queries using the noise-tolerant similarity function given in

(2).

7. Merge the pair of most similar queries (qi, qj) that contains

the same queries from different users.

8. Unless termination is reached, repeat steps 6 and 7.

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

Fig. 2. Performing personalized concept-based clustering algorithm on a small

set of clickthrough data. Starting from top left: (a) the original bipartite graph.

(b), (c) initial clustering. (d), (e) Community merging.

Initial clustering (i.e., steps 1-5 of Algorithm 3) is similar to

BB’s agglomerative algorithm as already discussed. However,

queries from different users are not allowed to be merged in

initial clustering. Figs. 2b and 2c show examples of query and

concept merging, respectively. Fig. 2d illustrates the result of

initial clustering. In community merging (i.e., steps 6-8 of

Algorithm 3), query clusters containing identical queries from

different users are compared for merging. Figs. 2dand 2e

show an example of query cluster merging. The query clusters

{apple computer(User2); apple(User1)} and {apple(User2)

and apple mac(User1)} both contain the query “apple” and are

leading to the same concept “apple store.” Therefore, they are

merged in community merging as one big cluster.

IV CONCLUSION

The algorithms described in this paper are fully capable of

clustering of search engine queries. If one performs

experiment with these algorithms then he/she finds better

precision and recall then the existing query clustering

methods. Better precision and recall values increases the

effectiveness of search engine queries, which does not add

extra burden to the users. Also with the help of these

algorithms one can improves prediction accuracy and

computational cost. Future work can be extended by getting

better precision and recall values for search engine queries.

V References

[1] G. Salton and M.J. Mcgill, Introduction to Modern Information
Retrieval. McGraw-Hill, 1983.

[2] J. Wen, J. Nie, and H. Zhang, “Query Clustering Using User Logs,”

ACM Trans. Information Systems, vol. 20, no. 1, pp. 59-81,2002.

[3] D. Beeferman and A. Berger, “Agglomerative Clustering of a Search

Engine Query Log,” Proc. ACM SIGKDD, 2000.

[4] T. Joachims, “Optimizing Engines Using Clickthrough Data,” Proc.
ACM SIGKDD, 2002.Search

[5] F. Liu, C. Yu, and W. Meng, “Personalized Web Search for Improving

Retrieval Effectiveness,” IEEE Trans. Knowledge and Data Eng., vol.
16, no. 1, pp. 28-40, Jan. 2004.

[6] Q. Tan, X. Chai, W. Ng, and D.L. Lee, “Applying Co-Training to

Clickthrough Data for Search Engine Adaptation,” Proc. Ninth Int’l.
Conf. Database Systems for Advanced Applications (DASFAA), 2004.

[7] R.A. Baeza-Yates, C.A. Hurtado, and M. Mendoza, “Query

Recommendation Using Query Logs in Search Engines,” Proc. EDBT

Workshop, vol. 3268, pp. 588-596, 2004.

[8] B. Smyth et al., “Exploiting Query Repetition and Regularity in an

Adaptive Community-Based Web Search Engine,” User Modeling and

User-Adapted Interaction, vol. 14, no. 5, pp. 383-423, 2005.
[9] M. Speretta and S. Gauch, “Personalized Search Based on User Search

Histories,” Proc. IEEE/WIC/ACM Int’l Conf. Web Intelligence (WI),

2005.
[10] Z. Zhang and O. Nasraoui, “Mining Search Engine Query Logs for

Query Recommendation,” Proc. 15th Int’l World Wide Web Conf.

(WWW), 2006.
[11] E. Agichtein, E. Brill, and S. Dumais, “Learning User Interaction

Models for Predicting Web Search Result Preferences,” Proc. 29th Ann.

Int’l ACM SIGIR Conf. (SIGIR), 2006.
[12] E. Agichtein, E. Brill, S. Dumais, and R. Rango, “Improving Web

Search Ranking by Incorporating User Behavior Information,” Proc.

29th Ann. Int’l ACM SIGIR Conf. (SIGIR), 2006.
[13] L. Deng, W. Ng, X. Chai, and D.L. Lee, “Spying Out Accurate User

Preferences for Search Engine Adaptation,” Advances in Web Mining

and Web Usage Analysis, LNCS 3932, pp. 87-103, 2006.
[14] T. Joachims and F. Radlinski, “Search Engines That Learn from Implicit

Feedback,” Computer, vol. 40, no. 8, pp. 34-40, 2007.

[15] Z. Dou, R. Song, and J.R. Wen, “A Large-Scale Evaluation and
Analysis of Personalized Search Strategies,” Proc. 16th Int’l World

Wide Web Conf. (WWW), 2007.
[16] W. Ng, L. Deng, and D.L. Lee, “Mining User Preference Using Spy

Voting for Search Engine Personalization,” ACM Tra , Internet

Technology, vol. 7, no, 4 article 19,2007.
[17] E. Agichtein, E. Brill, and S. Dumais, “Improving Web Search Ranking

by Incorporating User Behavior Information,” Proc. ACM SIGIR,

2006. ns. Internet Technology, vol. 7, no. 4, article 19, 2007.
[18] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N.

Hamilton, and G. Hullender, “Learning to Rank Using Gradient

Descent,” Proc. Int’l Conf. Machine learning (ICML), 2005.

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

