
 Volume 2, Issue 2, February 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

 Efficient and Dynamic Event-Based Middleware

For Location-Aware Mobile Application

 D. Ganesh
*
 Y. Karthik I.KumaraSwamy

 Assistant Professor, M.Tech (SE) student of IT, Assistant Professor

 IT Dept., SVNE, Tirupati SVNE, Tirupati EEE Dept., SVNE, Tirupati

Abstract— Now a day’s mobile application is playing a prominent role. With the combination of middleware, these are developing

widely. The main contribution is the event based programming model to develop mobile applications due to its inherent support for

loose coupling between the components required by mobile application. Existing middleware that supports the event based

programming for location aware mobile application for which highly mobile components come together dynamically to collaborate at

some location for that we introduce some of the techniques including location- independent announcement and subscription coupled

with location dependent filtering and event delivery that can be used by event- based middleware to support such collaboration. We

are including quality of service (QOS) in terms of event delivery latency. We intend to exploit the concept of proximity introduced

here as the basis for performing admission control to allocate the necessary communication resources for timely event delivery with a

dynamically varying of population of mobile components.

Keywords— Distributed system, middleware, publish subscribe, event based communication, mobile computing, collaborative and

location-aware applications, wireless ad hoc networks, Bayeux

I. INTRODUCTION

The widespread development in mobile application to

support application with guaranteed QOS requirements in

terms of event delivery latency is generally recognized as

being the next major advance in the information technology

industry. Both mobility and middleware represents the key

enabling technologies of underlying the vision of

communication paradigms for mobile computing.

 The event-based communication model represents an

emerging paradigm for middleware that asynchronously inter

connects the components that comprise an application in a

potentially distributed and heterogeneous environment,[5] and

has recently become widely used in application areas such as

large-scale internet services and mobile programming

environments . Event based communication is well suited to

address the requirements of mobile computing domain.

Mobile computing environments can utilize either the

infrastructure or the ad hoc network model devices that

interact through IEEE 802.11b-based [1] services. Several

middleware services utilizing the event-based communication

model have been developed thus for by both the industry and

academia. Most of these assume that the application

components comprising an application are stationary and that

a fixed network models, related to the dynamic

reconfiguration of the network topology.

Here we present STEAM (Scalable Timed Event and

Mobility),[1] an event –based middleware service that has

been designed for mobile computing domain specifically, it is

intended for IEEE 802.11-based wireless local area network

(WLAN) utilizing the ad hoc network model. We also realized

several prototypical collaborative application scenarios

derived from relevant areas, including search and rescue

gaming,[7] and especially transportation to evaluate the

proposed techniques. The evaluation demonstrates the

feasibility of accommodating representative scenarios from

the target category of application and illustrates the trade-off

of this support by assessing the cost of location- based event

dissemination as well as the latency imposed by location-

dependent event delivery in STEAM.

We envisage steam being utilized by collaborative

applications in various domains including indoor and outdoor

smart environments, augmented reality, and traffic

management. In a traffic management application scenario,

application components may represent mobile objects

including car, buses, fire engines, and ambulances as well as

objects with a fixed location, such as traffic signals and lights.

When with in close proximity, such components may interact

using STEAM in order to exchange information on current

traffic situation. As a simple example, an ambulance might

disseminate its location to the vehicle travelling in front of it

in order to have them yield the right of way. In general, inter-

vehicle communication may contribute the better driver

http://www.ijarcsse.com/

 Volume 2, issue 2, February 2012 www.ijarcsse.com

 © 2012, IJARCSSE All Rights Reserved

awareness of nearby hazards and is likely to lead to safer

driving.

This paper extends a previous paper [1]. The paper is

structured as follows: After a discussion of STEAM

Architecture Overview II, Section III provides information

about Related Work, Section IV present the LOCATION

AWARE EVENT-BASED MIDDLEWARE, and section V

Location-Independent Announcement and Subscription, and

section VI Location-Based Event Filtering, and section VII

proposed system is Latency, and section VIII Concludes this

paper.

II. STEAM ARCHITECTURE OVERVIEW

The STEAM event-based middleware has a number of

important differences from other events services that support

mobility

 STEAM assumes an ad hoc network model

supporting very dynamic coupling between

application components.

 The architecture of STEAM is inherently

distributed. The middleware is exclusively

collocated with the application components and

does not rely on the presence of ant

infrastructure.

 Application components are location

aware .geographical location information is

provided by location information is provided by

a location service and used to deliver events at

the specific location where they are relevant.

The STEAM middleware is fully distributed over some

physical machines as the components that comprise a

collaborative application. This implies that the middleware

located on every machine that has identical capabilities

allowing its components either to initiate or respond to

communication STEAM middleware architecture contains

neither centralized components, such as lookup and naming

services, nor the kind of intermediate components that are

used by other event services to propagate event notification

from event producers to event consumers. Generally,

dedicated machines that are part of the event service

infrastructure are used to host such components in order to

ensure that they are accessible to all application components

in a system at any time. However this approach is imperatival

in ad hoc environments due to lack of infrastructure and the

possibility of network partition.

 Fig. 1. STEAM architecture over view

The design of the STEAM architecture Fig.1 is motivated

by the hypothesis that there are applications in which mobile

components are more likely to interact once they are in close

proximity. This means that the closer event consumers are

located to a producer the more likely they are to be interested

in the events that it produces. Significantly, this implies that

events are relevant within a certain geographical area

surrounding a producer. For example, in augmented reality

games players are interested in the status of game objects or

indeed other players, only when they are within close

proximity. An example from the traffic management domain

might be a crashed car disseminating an accident notification.

Approaching vehicles are interested in receiving these events

only when located within a certain range of the car.

We argue that the STEAM architecture and our approach to

distributed event notification filtering helps to improve system

scalability by omitting centralized components and by

bounding the propagation of subscription information and

event notification. This reduces the use of communication and

computation resources which are typically scare in mobile

environments. In general, distributed event filtering limits the

number of filters being applied at a particular location and

balances the computational load of filters matching between

the physical machines in a system. The number of producer

side filter is independent of the potentially large number of

subscribers and the number of consumer side filters depends

solely on the number of local subscribers. As a result, filter

evaluation time can be bounded for the events disseminated in

a particular scope.

III. RELATED WORK

Recently some authors have begun to address distinct

requirements of collaborative mobile application or of

supporting event-based communication in ad hoc networks

characterized by the absence of shared infrastructure. Eg.

Application components using ad hoc networks cannot rely on

the use of access point when discovering peers in order to

establish connections to them .Event messages can neither be

routed through access point nor rely on the presence of

intermediate components that may reply on the presence of

intermediate components that may apply event filters or

enforce nonfunctional attributes such as ordering polices and

delivery deadlines.

JEDI—It allows Nomadic application components to

produce or consume events by connecting to a logically

centralized event dispatcher that has global knowledge of all

subscription requests and events. JEDI provides a distributed

implementation of the events dispatcher consisting of a set of

dispatching servers that is interconnected through a fixed

network. Nomadic entities may move using the moveOut

operation disconnects the entity from its current dispatching

server and moveIn operation allowing it to move to another

location to connect the dispatch server.

Elvin4—Represent event-based systems that support

mobility through the use of a proxy server maintaining a

permanent connection to the event servers on behalf of

nomadic clients components. [3]The proxy server stores

 Volume 2, issue 2, February 2012 www.ijarcsse.com

 © 2012, IJARCSSE All Rights Reserved

events while a client is temporarily disconnected and clients

can specify a time to live for each subscription to prevent

large numbers of events being stored indefinitely .Clients

must explicitly connect to proxy server using a URL and must

reconnect to the same proxy server each time they reconnect

to the event system.

Rebeca—It allows nomadic clients to access a network of

event routing brokers through local brokers. Local Brokers act

as access points and allow clients to disconnect at the network

broker to which they wish to relocate in a way similar to the

approach described. Rebeca also promotes of location

awareness. Eg: Describing the rooms in a house,[5] the places

in a city, or the (coarse-grained) coordinates of GPS system.

Topss—Supports location awareness by extending its

centralized filtering engine with a location matching engine.

Location information can be expressed as

latitude/longitude/altitude tuples and the location-matching

engine receives periodic updates of the location of mobile

entities. [7] Eg: Topss has been used for a friend-finder

application in which mobile users specify a mobile friend

about whom they wish to be notified when in closed

proximity.[8]

IV. LOCATION-AWARE EVENT-BASED

MIDDLEWARE

Event-based middleware to support pervasive and mobile

applications in which collaboration between nearby entities is

intrinsic must deal with the increased complexity that arises

from a potentially large number of interacting entities, from

their geographical dispersion, and from the spontaneously

changing connections between them. Mobile entities that

comprise this style of application characteristically move

together and apart over time. Sets of such entities typically

come together at a certain location to communicate and

collaborate, move apart, and then come together with other

entities at a different location to collaborate there. Hence,

these entities are more likely to interact when they are in close

proximity. For example, a vehicle is interested in receiving

emergency vehicle warnings from an ambulance only when

the ambulance is within close proximity.

Event Types and Proximities-- An implicit event-based

programming model, i.e., one that does not make the

present of other entities or event brokers explicit to

application programmers [2], is naturally suited for

applications in ad hoc environments. It allows producers to

publish events of specific event types and consumers to

subscribe to events of a particular type rather than having to

subscribe at another entity or at an intermediate, as is required

by peer-based and mediator-based event models [2].

Producers may publish events of several event types and

consumers may subscribe to one or more event types. To

accommodate collaborative applications, we propose an

implicit event model that supports geographical scopes

allowing producers to explicitly disseminate events to nearby

consumers. Producers associate the type of event they intend

to generate, or raise, with a geographical area, called the

proximity, within which events of this type are to be

disseminated.

Consumers can receive events of some type if (and only if)

they are located inside a proximity in which events of this

type are being raised. For example, an ambulance may define

a proximity, whose size may depend on its speed and

prevailing road conditions, for its emergency vehicle warning

events. Other vehicles will only receive these events when

located within this proximity relative to the ambulance.

Fig. 2. Supporting collaboration using event types and

proximities

Proximities may be of arbitrary shape and may be defined

as nested and overlapping areas. Nesting allows a large

proximity to contain a smaller proximity subdividing the large

area. Fig. 2 depicts two event types associated with

overlapping proximities of different shape and illustrates that

multiple consumers may reside inside a proximity. ProximityA

and ProximityB have been defined for Event¬_typeA and

Event_typeB, respectively. Consumers that have subscribed

will be delivered these events if they reside inside the

appropriate proximity. Note that consumers located inside

these areas but which are only interested in other event types

will not be delivered events of either type.

V. Location-Independent Announcement and

Subscription

Location-independent announcement allows producers to

advertise their events and have these advertisements persist

while moving location. As summarized in Fig. 3, a producer

using location-independent announcement specifies an event

type/proximity pair to associate a specific event type with

certain proximity. That producer may then generate events of

the announced type until it is unannounced and have them

delivered to interested consumers within the proximity.

Likewise, consumers use location-independent subscription to

subscribe to events allowing them to receive events of interest

whenever they move into a proximity in which such events are

being generated

 Volume 2, issue 2, February 2012 www.ijarcsse.com

 © 2012, IJARCSSE All Rights Reserved

Fig. 3. Location-independent announcement and

subscription.

Announcements specify both the functional and non-

functional attributes of the events to be generated by some

producer. The definition below shows that an event type

consists of a subject and content representing its functional

attributes, as well as of a self-describing attribute list

representing its non-functional attributes.

 Event Type = {Subject, Content, Attribute_List}

Location-Dependent Event Delivery— Event propagation

is location dependent in that events generated by a particular

producer are only delivered by consumers currently residing

in the appropriate geographical area. Producers announce

proximities to specify the locations at which their events are

relevant. Consumers discover these areas of interest and

subsequently deliver events at the locations where they are

relevant. Mobile (and stationary) consumers transparently

discover the proximities and ultimately the events of interest

that are available at their current location regardless of the

dynamics of the producers, i.e., whenever they enter a

proximity or a proximity (attached to some mobile producer)

arrives at their location. Consumers then deliver these events

for as long as they reside inside the proximity.

VI. Location-Based Event Filtering

An event system consists of a potentially large number of

producers [3], [4], [5], all of which produce events containing

different information. As a result, the number of events

propagated in an event-based system may be very large.

However, a particular consumer may only be interested in a

subset of the events propagated in the system or even within

its current locality. Event filters provide a means to control the

propagation of events. Ideally, filters enable a particular

consumer to receive only the exact set of events in which it is

interested. Events are matched against the filters and are only

delivered to consumers that are interested in them, i.e., for

which the matching produced a positive result.

Distributing Location-Based Filters--Location-based

event filtering allows an application to specify multiple event

filters, each of which may apply to a different attribute of a

specific event. Such filters may be combined and a particular

event is only delivered to a consumer if all filters match. For

example, considering that applications often consist of more

consumers than producers [6], [5], applying the filters defined

by many consumers on a single (producer) node, may result in

significant computational load for that node.

Defining Location-Based Filters---Location-based event

filtering supports three classes of event filters: subject filters,

content filters, and proximity filters Subject filters match the

subject of events and allow a consumer to specify the event

type in which it is interested.

Subject Filter= {Subject}

Filter Term= {Content Parameter Name,

Operator, Value}

Content Filter=

{(Conjunctive | Disjunctive),

 Filter Term,[Filter Term], ...}

Proximity Filter= {(Stationary | Mobile),

Area (Shape, Dimensions,

Reference Point), Naval}

VII. LATENCY

 Latency is mostly implemented in Subscription coupled

with Location-dependent Event Delivery and the Location

based Event Filtering. Better latency is provided through

Bayeux is a protocol for transporting asynchronous messages

(primarily over HTTP), with low latency between a web

server and web clients.

Purpose (Bayeux):

The primary purpose of Bayeux is to support responsive

bidirectional interactions between web clients, for example

using AJAX, and the web server.

Bayeux is a protocol for transporting asynchronous

messages (primarily over HTTP), with low latency between a

web server and a web client. The messages are routed via

named channels and can be delivered:

 server to client

 client to server

 client to client (via the server)

By default, publish subscribe routing semantics are applied

to the channels. Delivery of asynchronous messages from the

server to a web client is often described as server-push.

The combination of server push techniques with an Ajax

web application has been called Comet.

CometD is a project by the Dojo Foundation to provide

multiple implementation of the Bayeux protocol in several

programming languages.

Bayeux seeks to reduce the complexity of developing

Comet web applications by allowing implementors to more

easily interoperate, to solve common message distribution and

routing problems, and to provide mechanisms for incremental

improvements and extensions.

VIII. Conclusion

 The techniques provide the basis for supporting a wide

range of mobile applications, proposed work remains for this

 Volume 2, issue 2, February 2012 www.ijarcsse.com

 © 2012, IJARCSSE All Rights Reserved

to support applications with guaranteed quality of service

requirements (QOS) in terms of event-delivery latency. The

main intend to exploit the concept of proximity is here as the

basis for performing admission control to allocate the

necessary communication resources for timely event delivery

within a dynamically varying population of mobile

components

REFERENCES

[1] R. Meier, ―Event-Based Middleware for Collaborative Ad Hoc
Applications,‖ PhD thesis, Dept. of Computer Science, Trinity College,

Univ. of Dublin, Sept. 2003.

[2] B.P. Crow, I. Widjaja, J.G. Kim, and P.T. Sakai, ―IEEE 802.11
Wireless Local Area Networks,‖ IEEE Comm. Magazine, vol. 35, no. 9,

pp. 116-126, Sept. 1997

[3] P. Sutton, R. Arkins, and B. Segall, ―Supporting Disconnectedness—
Transparent Information Delivery for Mobile and Invisible

Computing,‖ Proc. IEEE Int’l Symp. Cluster Computing and the Grid,

pp. 277-285, 2001
[4] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf, ―Design and

Evaluation of a Wide-Area Event Notification Service,‖ ACM Trans.

Computer Systems, vol. 19, pp. 283-331, 2001.
[5] G. Mu¨ hl, L. Fiege, and P.R. Pietzuch, Distributed Event-Based

Systems. Springer-Verlag, 2006

[6] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, O. Seidel,
and M. Spiteri, ―Generic Support for Distributed Applications,‖

Computer, vol. 33, no. 3, pp. 68-76, Mar. 2000

[7] G. Cugola, E.D. Nitto, and A. Fuggetta, ―The JEDI Event-Based
Infrastructure and Its Application to the Development of the OPSS

WFMS,‖ IEEE Trans. Software Eng., vol. 27, no. 9, pp. 827-850, Sept.

2001.
[8] I. Burcea, H.-A. Jacobsen, E.d. Lara, V. Muthusamy, and M.Petrovic,

―Disconnected Operation in Publish/Subscribe Middleware,‖ Proc.

IEEE Int’l Conf. Mobile Data Management, pp. 39-50, 2004.
[9] Y. Huang and H. Garcia-Molina, ―Publish/Subscribe in a Mobile

Environment,‖ Proc. Second ACM Int’l Workshop Data Eng. Wireless

and Mobile Access, pp. 27-34, 2001.
[10] R. Meier, ―Communication Paradigms for Mobile Computing,‖ ACM

SIGMOBILE Mobile Computing and Comm. Rev., vol. 6, pp. 56-58,

2002.S. M. Metev and V. P. Veiko, Laser Assisted Microtechnology,
2nd ed., R. M. Osgood, Jr., Ed. Berlin, Germany: Springer-Verlag,

1998.

Authors Bibilography
Mr. D. Ganesh received his B.Tech degree in Information Technology from

JNT University, Hyderabad in 2006 and M.Tech degree

in Computer Science and Engineering from Acharya
Nagarjuna University in 2010.During the period 2006-

07 he worked as Assistant Professor in Information

Technology department at AITS, Rajampet, India. Since
2007, he is working as Assistant Professor in IT

Department at Sree Vidyanikethan Engineering College,

Tirupati, India. He has Published 8 papers in national
and International conferences. His current research

interests are computer networks, wireless

networks,Object oriented design and unified modeling. He is a member of
ISTE, CSI.

Mr. Y.Karthik received his B.Tech degree in
Information Technology from JNT University,

Anantapur in 2010 and Persuing M.Tech in
Software Engineering from Sree Vidyanikethan

Engineering College (Autonomous) Tirupati in

2011-2012.

