
 Volume 2, Issue 2, February 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Fault Analysis in the Selection of Automatic

Web Service Composition

Hima Bindu K
*
 Delhi Babu K

 Jaya Chandra Reddy B Suresh G

 Department of CSE, SVEC Department of CSE, SVEC Department of IT, SVEC Department of IT, SVEC

Abstract—Now-a-days, web services are a famous way to implement the architecture of the services which exists at the internet.

Choreography of more than one web service at same time to complete the workflow of activities given by user is one of the important

research issues in the field of SOA. We have many ways to compose different web services according to the activities in the given

workflow. Now-a-days, web service choreography will be done automatically and become an important research issues considered

under web service choreography. In this way, there is a chance of getting some faults at the time of choreography of web services.

This will be reduced when we will trace it at the time of the selection of web services before choreography. This paper express how to

analyze the faults occurred in the selection.

Keywords— Web Service Composition; Fault Analysis; Service Selection; Workflows; Automatic Service Composition.

I. INTRODUCTION

 Service-Oriented Architecture (SOA) is an upcoming
organizational model aiming at simplifying large-scale
business operations by consumption of ready-to-use services.
Here, services will be considered as a simple calculation or
typical business process. The most prominent realization of
SOA is currently in the area of web services. Web services are
loosely-coupled, platform-independent, self-describing
software components that can be published, located and
invoked via the web infrastructure using a stack of standards
such as SOAP, WSDL and UDDI which indicates binding,
discovery and publishing of new web services with existing
web services in the web service repository.

Web services are software programs that use XML to
exchange information with other software via common
Internet protocols. Web services are having some properties
such as scalable (e.g. multiplying two numbers together to an
entire customer-relationship management system),
programmable (encapsulates a task), based on XML - open,
text-based standard, self-describing nature (metadata for
access and use), and discoverable (search and locate in
registries).

The interaction of Web Services is based on the exchange
of messages. SOAP is an XML-based protocol for specifying
how to format and package the information contained in these
messages, and how to transmit them through the network. A
SOAP message is specified by an envelope that consists of a
SOAP header and a SOAP body. The header contains data
that is necessary for intermediate processing of the message or
infrastructure protocols (like security or transaction). The
application data that the sender wants to transmit to the

receiver is placed into the body part of the SOAP envelope.
The SOAP standard does not only specify the format of the
exchanged messages but also the transport protocol to be used
for transmission through the network. This specification of a
transport protocol is called binding. A binding defines how
messages are to be packaged within the transport protocol and
which protocol primitives are to be used.

The Web Services Description Language (WSDL) is an
XML-based language for the specification of the interface of a
Web Service. Originally it was created by Microsoft, IBM,
and Ariba and is now maintained by the Worldwide Web
Consortium (W3C). A WSDL document describes the
functionality of a Web Service, how to interact with it, and its
input and output messages. An XML document specifying a
Web Service interface encloses two parts of the WSDL
description, an abstract part and a concrete part. The abstract
part defines types, messages, operations, and port types of a
Web Service without specifying concrete bindings or
addresses, whereas the concrete part defines bindings and
ports.

UDDI stands for Universal Description Discovery and
Integration. This specification was first proposed by
Microsoft, IBM, and Ariba and is now supervised by the
standards organization OASIS [UDD]. The goal of UDDI is to
allow for publishing, discovering, and locating Web Services.
The information stored in a UDDI registry can be parted into
3 categories. To understand what kinds of information are
contained in a UDDI registry often there is an analogy with a
telephone directory used:

 The white pages are listings of organizations,
their contact information, and the Web Services
they provide. This category allows a client to

http://www.ijarcsse.com/

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

search for Web Services on the basis of
businesses.

 The yellow pages describe a classification of
companies and Web Services according to
taxonomies. By using this category of UDDI
information, a client can search for Web Services
based on a wanted category.

 The green pages provide information on the way
of invocating Web services.

By using the above standards, we can perform the web
service choreography. [1][2][3][4][5][6] specifies some of the
techniques to perform web service composition. In general,
web service choreography can be done in manual process. It
means, human intervention will be more than system
performance. This process will leads to the cause of many
failures at different situations in different phases of the
construction of choreography of composite web services. To
reduce the failures in the manual process and get better results
of the composite web services, we introduced the methodology
of the automation of manual web service choreography.

In automatic web service choreography, we have four
phases to perform automatic web service choreography. The
clear details about the phases are specified in [2]. In this paper,
we concentrate only on the analysis of the faults which occur at
the time of selection of composite web services in the
automatic web service choreography.

The rest of the paper is organized as follows. Section II
explains about the background of the web service
choreography. Section III presents motivation for fault
analysis. Fault analysis is presented in section IV. Section V
concludes this work.

II. BACKGROUND

There are two ways to perform web service composition.

Web services choreography is one way and other is

orchestration. Orchestration is typically a business process

involving one role (i.e. a single execution point) for the

process. Business does not always exist in such simple terms

especially in enterprise environments. In this situation, we use

choreography which considered as extension of orchestration.

In simple way, choreography means a coordination of a set of

individual web services being executed by one group of web

services with the steps in the web services accessing the other

groups or institutions. By using the way of choreography of

web services, we perform the automatic web service

composition by using both Orchestration and choreography. It

means selection of individual web services to form composite

web services is done by Orchestration and compiling and

execution of composite web services will be done by

Choreography.

III. MOTIVATION

Web services are becoming progressively popular in the

building of both inter- and intra-enterprise business processes.

These processes are composed from existing Web services

based on defined requirements. In collecting together the

services for such a composition, developers can employ

languages and standards for the Web that facilitates the

automation of Web service discovery, execution, composition

and interoperation. However, there is no guarantee that a

composition of even very good services will always work.

There is a chance of occurrence of any kind of faults at the

time of selection of web service composition which in turn

leads to the failure of software components. If any software

component will fail before execution of composite web

services, this will result in the total failure of the automatic

web service composition. Before the software component

become fail, failure analysis will help to reduce the occurrence

of failure in the automatic web service composition. To

overcome those failures, we know about what is the fault of

the software component which leads to failure. This reason

will give motivation to the analysis of faults which occur at

the time of selection of composite web services.

IV. FAULT ANALYSIS

Before going to the analysis of the faults which occurs in
the selection of automatic web service composition, we know
about the definition of faults which is specified as follows.

―A fault is an abnormal condition or defect at the
component, equipment, or sub-system level which may lead to
a failure‖.

There are many techniques to analyze the occurrence of
faults. One technique is to classify the faults according to the
situations in the selection of the composite web services. They
are considered in the different views such as physical view,
Development view and interaction view. These views are
considered at the time of the selection of the automatic web
service composition. The clear explanation of the above views
is listed as follows.

A. Physical View

Physical View is a situation of the conversation of web
services with the system in automatic way. That means the
occurrence of faults in the system architecture or software
components of the web services which was supposed to
execute it successfully. There are two choices of faults in the
physical view. One choice is failures in the system
architecture which was supposed to execute the given list of
web services. This will be done when system will got
damaged or failures in the power supply to the system which
leads to the major failures in the automatic web service
composition. Second choice of expecting failures in the
concept of physical view is a chance of occurrence of failure
in the software which supports the extraction of the web
services from repository. From this explanation, we clear
about what faults will be considered as physical view.

B. Development View

Development View is a situation where the chance of

occurrence of faults in the selection of web services to

perform web service composition in automatic way. There are

different ways to get a chance of occurrence of the faults in

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

the development view of the fault analysis. Some of the

critical issues related to this view are listed as follows.

1) Input/output is not correct /complete,

2) Preconditions/ post conditions are not satisfied,

3) SLA is violated, etc.

The above chance of occurrence of faults will occur at the

time of the development of the web service composition. This

will effect in the development of the composite web services

which leads to yield wrong outputs.

C. Interaction View

This view specifies the chance of the occurrence of the

faults in the interaction between system and the web services.

This view will also be considered as communication view. In

this view, we know about how faults will occur in two

different ways.

One is the occurrence of faults in the communication

between system and web services in repository. Second one is

the occurrence of failure in the communication of web

services in the composite web services which will participate

in the automatic web service composition.

Some issues which is considered under this view is stated

as follows

1) Message is lost

This kind of faults will be raised when a communication

message is sent from one web service to other or from system

to Repository. It means a message which was sent by one side

was not received by other side. This will leads to the effect of

―a service which can interact with other will not coordinate

with other service which will be useful to achieve user

requirements‖.

2) Connection error

This kind of failure will arise when two systems i.e. client

and server which one extracts web services from repository

and send to other which will perform selection of individual

web services to form composite web services are not

communicate to each other. This will leads to the failure not

only for selection of composite web services but also for

automatic web service composition.

3) Timeout is expired

This is a fault which occurs at the interaction of the client
and server communication. Communication is done based on
the time slot for a particular task. Based on that time slot,
messages are exchanged between client and server to access
the web services to perform the task given by the user. If there
is any problem in the system like the speed on transmission of
the messages will be slow, slow response by the system for
received request, then the response or acknowledgement
messages will not receive in correct time according to the
given time slot. Then the system considers as ―message will
be lost but in actual process, that message was sent by other
system‖

From the above views, we have a popular terms is
messages which communicates one system with other, one

web service with other or web services to the other system or
vice versa. Messages are implemented by a standard language
named SOAP (Simple Object Access Protocol).

Some of the faults in the automatic web service selection
will be discussed in [7] [8]. These papers will also specify the
detection, detection and diagnosis of the faults in the web
service selection. In some situations, we will call the faults in
the web service composition as failure risks. This can be
clearly discussed in [9].

Existing service composition selection models do not
consider unpredictable service faults take into account. The
problem cannot be fully resolved by discarding the failed
service. The time for finding a new solution from scratch
increases latency for the requests arrived in the system. We
have to propose to choose several configurations with good
qualities at the selection stage. If a failure occurs in the chosen
configuration, selection can be switched into another
configuration. Furthermore, we have an idea about the raising
of faults and how to diagnose it by an example is described in
[9] [10]

V. CONCLUSIONS

In general, we have a chance of occurrence of faults in the

web service composition in the time of its development. We

have several methods to resolve these faults but we know

about what kind of fault will appear and how it can be resolve

by using the existing methodologies. This will be understood

by analyzing the raised fault in the corresponding automatic

web service composition. In this paper, we discuss about what

are the faults raised at the time of the selection of the

automatic web service composition. We have to study about

the other phases (i.e. execution and design) in the automatic

web service composition as future work. Extension to this

work is to study about how it can be traced automatically by

the system. It means designing the corresponding tool to trace

the faults which will occur at not only the time of selection but

also for total web service composition.

ACKNOWLEDGMENT

I want to say thankful to my institution named Sree

vidyanikethan Engineering College (SVEC), Tirupati and also

to my project guide to encourage me to prepare this paper by

giving his moral support to improve my skills.

REFERENCES

[1] Sleiman Rabah, Dan Ni, Payam Jahanshahi, Luis Felipe

Guzman,"Current State and Challenges of Automatic Planning in Web
Service Composition",

[2] Elias Ioup, John SampleAnya Kim, Myong Kang, Catherine

Meadows"A Framework for Automatic Web Service Composition"
[3] Marco Pistore, "Synthesys and Composition of Web Services.",2009

[4] Srivastava, B., Koehler, J.,‖Web Service Composition - Current

Solutions and Open Problems‖, Proceedings of ICAPS Workshop on
Planning for Web Services, 2003.

[5] Yujie Yao, Yujie Yao, "A Rule-based Web Service Composition

Approach", Sixth International Conference on Autonomic and
Autonomous Systems, 2010.

[6] Chafl, G., Chandra, S., Kankar, P., Mann, V.: ‖Handling Faults in

Decentralized Orchestration of Composite Web Services‖,
International Conference on Service-Oriented Computing, 2005, pp.

410–423.

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

[7] S.Poonguzhali1, R.Sunitha2, Dr.G.Aghila3, "Self-Healing in Dynamic

Web Service Composition", S.Poonguzhali et al. / International Journal

on Computer Science and Engineering (IJCSE), pp-2054-2060.

[8] Mohammad-Reza Motallebi, "Failure Recovery in Web Service

Composition", LIP6-NII Workshop -Paris, June 2010

[9] Adina Mosincat, Walter Binder, ―Automated Performance
Maintenance for Service Compositions"

[10] Natallia Kokash,"A Service Selection Model to Improve Composition

Reliability"

