
 Volume 2, Issue 2, February 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Query Optimization in Object Oriented Databases through

Detecting Independent Subqueries
 Ms. M.C. Nikose Ms. S.S. Dhande Dr. G. R. Bamnote

 Computer Science & Engineering Computer Science & Engineering Computer Science & Engineering

 Sipna’s College of Engg & Tech. Sipna’s College of Engg & Tech. P.R.Meghe Institute of Tech. & Research
 Amravati, Maharashtra. Amravati, Maharashtra. Badnera, Maharashtra.

 India. India India

Abstract - Query optimization is the refining process in database administration and it helps to bring down speed of execution. Some

object-oriented languages allows to express queries explicitly in the code, which are optimized using the query optimization techniques

from the database domain. With respect to this, a formalized object query language (OQL) has been developed that performs optimization

of queries at compile time. Object Oriented Data Base (OODB) has all the features, functionality of a relational database system and also

offers an Object Oriented Programming language interface. We follow the stack based approach to query languages, which is responsible

for naming-scoping-binding principle. In this paper we proposed one of the methods of query optimization depending on rewriting.

Optimization by rewriting concerns queries containing so called independent subqueries. It consists in detecting them and then factoring

outside the loops implied by query operators.

Keywords: OQL, Object Oriented Database, Stack Based Approach, Rewriting, Query Optimization.

I. INTRODUCTION

During the last two decades, Relational Database

Management System (RDBM) has been established as the

technology, handling databases up to terabytes. Relational
DBMSs have been extremely successful in the market;

however RDBMS lack the mechanisms to deal with

complex structured data. Their tabular approach does not

allow a suitable modeling of complex hierarchical objects.

Most of the applications such as Geographical Information

System, CAD, Multimedia, and Engineering etc. are

characterized by having to manage complex, highly

interrelated information, which was difficult to manage in

RDBMS. To combat the limitations of RDBMS and meet

the challenge of the increasing rise of the internet and the

Web, programmers developed object-oriented databases in

1980 [7].

In recent years, database research has concentrated on

object-oriented data models, which allow to store highly

structured data. With regard to the data structuring

concepts offered, an object-oriented data model can be

looked upon as an extension of the nested relational model,

[5] which allows to store relations as attribute values.
However, the relational model only permits the alphanumeric

data management. A similar role in object-oriented database

is fulfilled by object query languages (OQL). The

usefulness of these languages strongly depends on query

optimization. With growing complexity of data structuring

concepts, the complexity of the accompanying query

language grows as well and thus also the complexity of

query processing and optimization.

For the correct and precise formalization of object

query language the concept of naming-scoping-binding

paradigm must take into consideration. Hence we fallow

the Stack Based Approach (SBA). Analyzing query

processing in the Stack Based Approach (SBA) [3], it can

be observed that some subqueries are evaluated many times

outside the loops implied by the non-algebraic operators

despite that in subsequent loop cycles there results are

same. Such subqueries can be processed only once and

their result can be used in next loop cycles. This

observation is a basis for our proposed method called

factoring out independent subqueries. The underlying idea

used here is that, if none of the name in subquery is bound

in the ES section opened by the non-algebraic operator

currently being evaluated, then this subquery is

independent of this operator. This means that subquery can

be factored out of that operator, i.e., executed outside its

iteration loop.

II. OVERVIEW OF OODBMS

An OODBMS is the result of combining object

oriented programming principles with database

management principles. Object oriented programming

concepts such as encapsulation, polymorphism and

inheritance are enforced along with regular database

management concepts such as the Atomicity, Consistency,

Isolation and Durability (ACID properties) which lead to

system integrity, support for an ad hoc query language and

secondary storage management systems which allow for

http://www.ijarcsse.com/

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

managing very large amounts of data.. OODB [6] is a

system while supporting all the functionality of a relational

database system (including queries, transactions, backup

and recovery mechanisms), also offers an Object oriented

programming language interface, user defined data types,

object identifiers and the ability to manage objects

persistently. Features that are common in the RDBMS

world such as transactions, the ability to handle large

amounts of data, indexes, deadlock detection, backup and

restoration features and data recovery mechanisms also

exist in the OODBMS world. Following figure shows the

features of Object oriented Database [8]. A

primary feature of an OODBMS is that accessing objects in

the database is done in a transparent manner such that

interaction with persistent objects is no different from

interacting with in-memory objects.

 Fig 1. Features of OODBMS

Database operations typically involve obtaining a

database root from the OODBMS which is usually a data

structure like a graph, vector, hash table, or set and

traversing it to obtain objects to create, update or delete

from the database. When a client requests an object from

the database, the object is transferred from the database

into the application's cache where it can be used either as a

transient value that is disconnected from its representation

in the database or it can be used as a mirror of the version

in the database in that updates to the object are reflected in

the database and changes to object in the database require

that the object is refetched from the OODBMS.

III. QUERY OPTIMIZATION IN OODBMS

Query optimization in relational databases is benefited

a lot from the simplicity of the data model. This is not the

case with the object model. The object-oriented data model

is a generalization of the relational one and is believed to

eliminate many of its flaws through incorporating modern

concepts. Object models are descended of the semantic

networks and object programming languages. They aim to

permit the reuse of structures and operations to construct

some more complex entities. [4] Data are represented in the

basis as of objects. Associations are implemented by the

direct ties via object identifying that permit a fast

navigational access between the different objects. Indeed, a

query must use the new concepts introduced by object

model [3]. The class is a data abstract type permitting to

define properties of a whole of objects regrouped in two

categories: attributes and operations [5][6].The object is a

triplet <OID, class, state>, the OID is identifying of the

object. It's unique and invariant during the program. The

attribute is defined by its name and its type. An operation

is a function that permits to modify the state of an object or

to send back a value. The inheritance is a transmission

mechanism of properties of a class toward one under class.

The inheritance is simple if the property is inherited of

only one on-class. It is multiple when the property is

present in several on-classes. The polymorphism is the fact

to arrange operations having one same name but of the

different parameters in number or in types.

 Fig 2. Optimization Process

Most of the query optimization methods are based on

query rewriting [9]. Rewriting means transforming a query

q1 into semantically equivalent query q2 promising much

better performance. It consists in detecting parts of query

matching some patterns. When it is recognized, a query is

rewritten according to the predefined rewriting rule. The

advantage of rewriting is that algorithm are fast, such

optimization is compile time optimization entirely

performed before query is executed, hence query

optimization process itself does not burden the

performance. Process of optimization is summarizes in

three steps shown in figure 2 Rewrite step consists in a

syntactic and semantic rewrite of the query in the goal to

determine simpler equivalent queries [1]. The result of this

step is the generation of a query graph. Ordering

operations step is takes place in two phases: generation and

assessment of the plans which determined in the first

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

phase. Execution step permits to choose the optimal

execution plan and to execute it

IV. STACK BASED APPROACH

The Stack-Based Approach (SBA) is a formal frame

addressing object-oriented database query and

programming languages (PLs). The approach is motivated

by the belief that there is no definite border line between

querying and programming; thus there should be a

universal theory that uniformly covers both aspects. SBA

allows [3] to precisely determine the semantics of query

languages; there relation with object oriented concepts,

with imperative programming constructs and with

programming abstraction, including procedures, functional

procedures views, modules etc. its main features are the

following

 The naming-scoping-binding principle is assumed,

which means that each name occurring in a query

is bound to the appropriate run-time entity (an

object, attribute, method, parameter, etc.)

depending upon the scope for the name.

 One of its basic mechanisms is an environmental

stack (ENVS). The stack is responsible for scope

control, for binding names, parameter passing and

procedure calls. ENVS is also responsible for

processing non-algebraic query operators.

 The object relativity principle is assumed, i.e.

object on any hierarchy level have same formal

properties and are treated uniformly. This

principle simplifies semantic considerations in

developing query optimization methods.

 For objects the principle of internal identification

is assumed; each run-time entity that can be

separately bound, inserted, updated, deleted etc.

must possess a unique internal identifier.

 In all programming language the naming-scoping-

binding issue leads to the mechanism, internal data

structure called as Environmental Stack (ENVS)[1],[2]. It

employs abstraction principle, which allows the

programmer to consider the currently rewritten piece of

code to be independent of the context of its possible use.

Hence safe nesting of procedure calls is assured, including

any recursive calls. ENVS is subdivided into sections,

which are ordered, with newest section known as top and

oldest one as bottom. A section is associated with a

particular procedure call or an executed program block.

 The stack consists of sections that are sets of binders.

Binder is a concept that allows us to explain and describe

various naming issues that occur in object models and

programming languages. At the beginning, the ENVS

consist of single section containing binders to all root

database objects. During query evaluation the stack is

growing and shrinking according to query nesting. Here we

assume a small database schema shown below in fig 3.It

defines five classes as Person, Professor, Student, Lecture

and Faculty. Names of classes are followed by cardinality

numbers, unless the cardinality is [1….1].Queries are

combined by operators. All the operators use for joining a

query are either unary or binary. Binary operator is

subdivided into algebraic and non-algebraic. The main

difference between them is that whether they modify the

state of ENVS during evaluation or not.

Fig. 3 Database Schema

 An operator is algebraic if it does not modify the state

of ENVS. The algebraic operators include numerical and

string operators and comparisons, Boolean and, or, not,

aggregate function, and sequence operators and

comparisons, structure constructor, etc. Operators which

name a query result are unary algebraic operators too. The

operator group as names the entire query result, while as

names each element in a sequence or bag returned by the

query. If q1 Δ q2 be a query consisting of two subqueries

connected by a binary algebraic operator Δ. The eval

procedure takes q1 and pushes its result onto top of QERS

then does the same with q2 , performs Δ with two top

QRES values and finally removes top of QRES twice and

pushes the final result onto top.

 If query q1 Ɵ q2 involves a non-algebraic Ɵ, then q2

is evaluated in the context of q1. The context is determined

by the new section opened by the Ɵ operator on ENVS for

an element of q1. A new stack section pushed onto ENVS

is constructed by a special function. Subqueries q1 and q2

cannot be processed independently, the order of evaluation

is important. Non-algebraic operators include projection

/navigation (q1.q2), selection (q1 where q2), dependent

join (q1 join q2), quantifiers (Ǝq1q2), transitive closure and

ordering.

V. BASIC IDEA OF PRPOSED METHOD

In this paper we are proposing one of the methods of

query optimization. The idea of this method is based upon

the observation that, if none of the name in subquery is

bound in the ENVS section opened by the non-algebraic

operator currently being evaluated, then this subquery is

independent of this operator. Subqueries are called

independent if they can be evaluated outside loops implied

by the non-algebraic query operators. Such subqueries are

worth analyzing because they usually imply optimization

possibilities [1],[5].We use a special technique called the

method of independent subqueries to optimize queries.

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

Technically, it consists in analyzing in which sections

particular names occurring in a query are bound. It turns

out that if none of the names in given subquery is bound in

the scope opened by the non-algebraic operator currently

being evaluated, then that subquery can be evaluated earlier

than it results from its textual place in the query it is a part

of. The method modifies the textual form of a query so that

all its subqueries will be evaluated as soon as possible. To

determine in which scopes names occurring in a query are

bound at run time [10], we statically analyze that query and

during analyzing we additionally do the following:
 Each non-algebraic operator is assigned the

number of the scope it opens,

 Each name in the query is assigned two numbers:

 The stack size: the number of scopes thst

is on static ENVS when the binding of

this name is being performed.

 The binding level: the number of the

scope on the stack in which this name is

bound.

All those numbers are determined relatively to the

bottom scopes of a query. Thus, for instance the binding

level for a free name (names that are bound in the bottom

scopes) is 1, and for non-free name (names that are not

free) is greater than 1. The independent subquery method

consists in analyzing the number of those ENVS section in

which particular names occurring in a query are bound.
For example, consider a simple query “Get lectures whose

credits are greater than the credits of physics”

Lecture where credits >

((Lecture where subject =”physics”).credits) (1)

Here the subquery returning the credits of physics:

(Lecture where subject =”physics”).credits (2)

Is evaluated for each Lecture object existing in the

database, while it is enough to calculate it just once,

because its evaluation gives the same result every time. We

can say that this subquery is independent of its direct non-

algebraic operator. Let us see how the number are assigned

to query,

Lecture where credits >

(1, 1) 2 (2,2)

 ((Lecture where subject =”physics”).credits)

 (2,1) 3 (3,3) 3 (3,3)

As shown above none of the names in subquery (2) is

bound in section 2 opened by external where, therefore

subquery (2) is independent of that operator and can be

calculated before it opens its section. To express it in the

textual form of the query, the independent subquery is

factored out this is done in following ways,

 A new unique auxiliary name is chosen. It will be used

as the name of the result of the independent subquery

(2).

 Then the subquery (2) is named by the as operator, put

before the entire subquery (1) of the non-algebraic

operator it is independent of, and connected to the rest

of the query (i.e. 3) by a dot operator.

 Finally, the auxiliary name is put in the previous place

of (2) this subquery. After factoring subquery (2) out,

query (1) will be rewrite as

(((Lecture where subject =”physics”).credits) as c).

 (1,1) 2 (2,2) 2 (2,2) 2

 Lecture where credits > c (3)

 (2,1) 3 (3,3) (3,2)

 Where c is the auxiliary name. Now subquery (2) is

evaluated before its result is used and the auxiliary name c

naming its result makes it possible to read this result. The

method of independent subquery is quite sophisticated , it

recursively traversed a query abstract syntax tree(AST) to

find the largest subquery which is independent of the

currently evaluated non-algebraic operator. After detecting

such subquery AST is reorganized according to the

rewriting rule. The process is repeated until all independent

subqueries are discovered and rewritten.

VI. CONCLUSION

The necessity to support complex data in databases

is intensified. Models trying to answer to these needs

appeared as the object-oriented and the object relational

model. The relational model only permits the alphanumeric

data management. To combat the limitations of RDBMS

and meet the challenge of the increasing rise of the internet

and the Web, programmers developed object-oriented

databases. In this paper we discuss some basic concepts

and features of OODBMS. We present a new optimization

method for queries involving independent subquery. More

powerful variants of the method were received on the

assumption concerning the distributive property of

selection, projection/navigation and dependent join. Due

this property we can develop extended version of query

rewriting methods known from the relational model, in

particular, pushing selection before a join.

REFERENCES
[1][JPlod00] J. Płodzień, A. Kraken, “Object Query Optimization through

Detecting Independent Subqueries”, Information Systems, Elsevier

Science, 25(8), 2000, pp. 467-490.
[2][Mich09] Michel Bleja, Krzysztof Stencel, Kazimierz Subeita,

“Optimization of Object-Oriented Queries Addressing Large and Small
Collections”, Proc. Of the IMCSIT, 2009, ISBN 978-83-60810-22-4, Vol.

4, pp. 643-680.

[3][Subi95] K.Subieta, C.Beeri, F.Matthes, J.W.Schmidt. “A Stack-Based
Approach to Query Languages”. Proc.2nd East-West Database

Workshop, 1994, Springer Workshops in Computing, 1995, 159-180.

[4][MA05]Minyar Sassi, and Amel Grissa-Touzi “Contribution to the
Query Optimization in the Object-Oriented Databases” World Academy

of Science, Engineering and Technology 11 2005

[5][G99]G. Gardarin, “Object and relational databases” , Eyrolles, 1999.

[6] [RC 94]R.G.G. Catell, “Object-Oriented Data Management: Object-

Oriented and Extended Relational Database Sytems”, Addison-Wesley

Publishing, Inc., 1994.
 [7] Sunanda Luthra “Architecture In Object Oriented databases

”Lecturer, Department of CSE/IT Amritsar College of Engg. & Tech,

Amritsar.143001,Punjab, India .
[8] David Maier “Object-Oriented Database Theory An Introduction &

Indexing in OODBS”

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

[9][Plod00] J. Plodzien, “Optimization Methods in Object query

Languages”, Ph. D. Thesis, Institute of Computer Science, Polish

Academy of Sciences, 2000.

