
 Volume 2, Issue 2, February 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Implementation of Shortest Path in Packet Switching

Network Using Genetic Algorithm
Gajendra Singh Chandel,Ravindra Gupta Arvinda Kushwaha

 (Computer Sc. &engineerin),RGTU,Bhopal M.Tech.(Scholar,SSSIST,Sehore)

Abstract- The problem of finding the optimal path between two nodes is a well known problem in network analysis. Optimal

routing has been widely studied for interconnection networks this dissertation work considers the problem of finding the optimal

path. A Genetic algorithm based strategy is proposed and the algorithm has been developed to find the Optimal Path. This paper

work presents a genetic algorithmic approach to the shortest path routing problem. Variable-length chromosomes and their

genes have been used for encoding the problem. The crossover operation exchanges partial chromosomes at positionally

independent crossing sites and the mutation operation maintains the genetic diversity of the population. The proposed algorithm

can cure all the infeasible chromosomes with a repair function. Crossover and mutation together provide a search capability that

results in improved quality of solution and enhanced rate of convergence. Even though shortest path routing algorithms are

already well established, there are researchers who are trying to find alternative methods to find shortest paths through a

network. One such alternative is to use genetic algorithm.

Keywords: Genetic algorithm, crossover, selection, Mutation.

I. INTRODUCTION

For the information-oriented society in the early years of 21
st

century, communication by packet flow in large-scale computer

networks becomes much more important in our daily life than

ever before. The problem of finding the shortest path between

two nodes is a well-known problem in network analysis.

Shortest path algorithms have been a subject of extensive

research, resulting in a number of algorithms for various

conditions and constrain [1-3].Adaptive routing algorithms [4-

8], which can select the route of pack ets dynamically, have

been widely studied to make the best use of bandwidth in

interconnection networks of massively parallel computers and

system area networks (SANs). Most of real SANs for PC

clusters [9-10] have not employed adaptive routing. This is

because adaptive routing introduces new problems in the

networks. First, it does not guarantee in-order packet delivery in

which some message passing libraries require. Second, switch

complexity may be increased, because they compute alternative

output channels and select one of them introducing selection

logic. In the context of SANs, some works have also proposed

simple methods to support adaptive routing in Infinite Band

switches [11]. In a packet switching network, communication

between two hosts generally takes place in the following

manner: the transmitting host delivers to a node a block of data,

called a packet, which are addresses to the destination host. The

objective of a routing strategy is essentially to minimize the

mean delay of the packets in a network, subject to some

reliability or capacity constraints [12-16]

 Routing is one of the most important issues that have a

significant impact on the network's performance [17], [18]. An

ideal routing algorithm should strive to find an optimum path for

packet transmission within a specified time so as to satisfy the

quality of Service (QoS) [18]-[20]. There are several search

algorithms for the shortest path (SP) problem: the breadth-first

search algorithm, the Dijkstra algorithm and the Bellman-Ford

algorithm, to name a few [17]. Since these algorithms can solve

SP problems in polynomial time, they will be effective in fixed

infrastructure wireless or wired networks. But, they exhibit

unacceptably high computational complexity for real-time

communications involving rapidly changing network topologies

[19], [20]. In most of the current packet-switching networks,

some form of SP computation is employed by routing algorithms

in the network layer [18], [20]. Specifically, the network links are

weighted, the weights reflecting the link transmission capacity,

the congestion of networks and the estimated transmission status

such as the queuing delay of head-of-line (HOL) packet or the

link failure. The SP problem can be formulated as one of finding a

minimal cost path that contains the designated source and desti-

nation nodes. In other words, the SP routing problem involves a

classical combinatorial optimization problem arising in many

designs and planning contexts [18]-[23]. Since neural networks

(NNs) [18]-[20] and genetic algorithms (GAs) (and other evo-

lutionary algorithms) [21] [24] promise solutions to such com-

http://www.ijarcsse.com/

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

plicated problems, they have been used successfully in various

practical.

 II. PROPOSED APPROACH

A. CHROMOSOME REPRESENTATION

A network can be thought of interconnection of nodes

where distance between two nodes is represented by {ei} various

paths of a network are shown in fig-1:

 B C

A

 E F

 D

 H

 G

 Figure 1: Chromosome Representation

Let, e1 = AB = 2, e2 = BC = 7, e3 = CD = 3, e4 = GH = 4, e5 = AG

= 6, e6 = EF = 2, e7 = BE = 2

 e8 = CF = 3, e9 = DH = 2, e10 = FH = 2, e11 = GE = 1

One of the combinations of edges can be:

{e5 (6), e2 (7), e4 (4), e6 (2)}

Each edge is represented by four bit string therefore the above

combination of edges can be represented by following strings:

0110 0111 0100 0010

And, {e1 (2), e11 (1), e10 (2), e3 (3)} these combinations can be

represented by following

 Strings: 0010 0001 0010 0011

Algorithm: 1(Algorithm for identifying path from source to

destination)

path (source, destination,*source node)

{Identify source and destination in given graph

 push(sourse);

 while(top!=NULL)

{

 tempnode=pop(&top);

 check whether the node is visited or not

 if not visisted set flag=1

 {

while(tempnode->info!=destination && temparc!=NULL)

 {

push(tempnode);

 p[i][j]=temparc;

 tempnode=temparc->adj;

 temparc=tnode->edg;

 j=j+1;

 if(tempnode->info==destination)

 {

p[i][j]=NULL;

 i=i+1;

 }

 End if

}

 End while

}

End while

}

End

}

Algorithm-2(Algorithm for random path from source to

destination)

 randompath(*source_node)

{

store all edges in an array

 intilize len=0

 repeat step 3,4,5 while(len<length_of_array)

 use mode function index=(3*random_num)%4 to select an edge

from array

 assign the selected edge to two diminsion array

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

 len=len+1

 End

}

Algorithm-3(Algorithm for creating a node)

CreateNode(**source,*temp,*tc,c,data)

 Assign a block of size from the memory heap in to temp

 temp->next=NULL

 temp->edg=NULL

 temp->info=data

{

 If(*source==NULL)

{

Then *source=temp

 else

 tc=*source

{while(tc->next!=NULL)

{ tc=tc->next

 End While

}

 tc->next=temp

}

End Else

}

End If

}

Algorithm-4(Algorithm for Connect Nodes which are

present in the whole graph)

ConnectNodes(*source,*temp,*back,*track,*tc,*ptr)

 temp=source

 back=temp

while(temp->info!=p)

{temp=temp->next

 back=temp

 End While

} temp=source

 track=temp

 while(temp->info!=c)

{ temp=temp->next

 track=temp

 End While}

Print : Enter the Weight of edge

 Assign a block of size from memory heap to the tc

 tc->w=wit

 tc->adj=track

 tc->nextptr=NULL

 tc->flag=0

 If(back->edg==NULL)

{

Then back->edg=tc

 End If

} Else

{ ptr=back->edg

 while(ptr->nextptr!=NULL)

{ ptr=ptr->nextptr;

 End While}

 ptr->nextptr=tc;

 End Else

}}

B. Crossover

 We applied two points crossover on initial population Suppose

four randomly generated individuals are:

 e2 (7) e4 (4) e3 (3) e5 (6) e8 (3) sum of edges23

 e1 (2) e11 (1) e5 (6) e2 (7) e6 (2) sum of edges18

 e4 (4) e7 (2) e3 (3) e11 (1) e6 (2) sum of edges12

 e1 (2) e3 (3) e6 (2) e2 (7) e7 (2) sum of edges16

 Before Crossover,

 0111 010 0 0011 011 0 0011 sum of edges23

 0010 000 1 0110 011 1 0010 sum of edges18

 0100 001 0 0011 000 1 0010 sum of edges12

 0010 001 1 0010 011 1 0010 sum of edges16

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

 (Applying two point Crossover)

 After Crossover,

 (7) (5) (6) (7) (3)

 0111 0101 0110 0111 0011 sum of edges28

 (2) (0) (3) (6) (2)

 0010 0000 0011 0110 0010 sum of edges13

 (4) (3) (2) (7) (2)

 0100 0011 0010 0111 0010 sum of edges18

 (2) (2) (3) (1) (2)

 0010 0010 0011 0001 0010 sum of edges27

Algorithm-5(Algorithm for Crossover operation)

Crossover (data [][])

 { For i = 0 to 3

 { For j= 0 to 15

 { If (j==4)

 { Data [i][j] =! data[i][j]

 }

 If (j==11)

 { Data [i][j]=!data[i][j]

 }

}

}

 }

C. MUTATION

Mutation of a string is implemented through a very

simple protocol. We will replace first four bits with source and

last four bits with destination.

Since in our network source node is A and destination node is

D, therefore we replace first four bits by 0010 and last four bits

by 0010

 (2) (5) (6) (7) (2)

 0010 0101 0110 0111 0010 sum of edges22

 (2) (0) (3) (6) (2)

 0010 0000 0011 0110 0010 sum of edges13

 (2) (3) (2) (7) (2)

 0010 0011 0010 0111 0010 sum of edges16

 (2) (2) (3) (1) (2)

 0010 0010 0011 0001 0010 sum of edges10

Algorithm-6(Algorithm for Performing Mutation)

Mutation(data[i][j],position,counter,limit)

 Initialize position = 0, i = 1, j = 0 and counter = 1

 Start while(i < limt)

{

 pos=pos+4

 Increment i=i+1

 End While}

Assign i=0

 Start while(data[i][0] != -1)

{

 Assign counter=1

 Assign j=0

 Start while(j < 4)

{

If(counter == 3) Then

 data[i][j] = 1

 End If}

 Else data[i][j]=0

}

End Else

}

Increment counter = counter + 1

 Increment j=j+1

 End while}

Assign j=pos

 Assign counter=1

 Start while(j < (pos + 4))

{

 If(counter == 3)

{

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

 Assign data[i][j]=1

 End If

}

Else data[i][j]=0}

End Else}

Increment counter = counter + 1

 Increment j = j + 1

 End While}

Increment i = i + 1

 Printf "After Mutation " Call displaybin(data)

 }

D. SELECTION

In the above problem our fitness function is = min

(∑ei), with continuity

After mutation, we have minimum path length from source node

to destination node is:10 (min path length from A->D) (0010

0010 0011 0001 0010)

 Path-> AB BE FC EG FH

We Observed that it is not a continuous path, therefore we have

to select minimum path with continuity

After iterations we get, minimum path length 10 with continuity

10 (min path length after selection) (0010 0010 0010 0010

0010)

 Path-> AB BE EF FH HD

This is the most optimal path.

Algorithm-7(Algorithm for Main Function)

We need a pointer variable source of node structure type and

Source and Destination in Graph

Main(source,destination,struct node *source)

{

 Initialize source = Null

 Call createNode(&source)

 If(source != Null) Then

{

 Call connectNodes(source)

 Input source and destination

 Call randomPath(source)

 Call path(source,destination,Source)

}

}

E. RESULT

III. CONCLUSIONS

 Genetic Algorithm provides a useful problem solving

technique. The proposed approach shows, how GA can be used

to solve a very general version of shortest path problem. A GA

encoding along with the genetic operators is defined. The

performance of the algorithm is better than previous work. For

the practical implementation of the proposed work Coding of

the algorithm is also included. This technique can be very useful

to evaluate the shortest path in various networks. This research

work presented a genetic algorithm for solving the SP routing

problem. The crossover and the mutation operations work on

variable-length chromosomes. The crossover is simple and

independent of the location of crossing site. Consequently, the

algorithm can search the solution space in a very effective

manner. The mutation introduces, in part, a new alternative

route. In essence, it maintains the diversity of population thereby

avoiding local traps. A treatment for infeasible solutions

(chromosomes) has also been investigated without unduly com-

promising on computational requirements. The proposed

Volume 2, issue 2, February 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

algorithm can search the solution space effectively and speedily

compared with other algorithms. Proposed algorithm is

implemented in C language that can search an optimal path in

optimum time.

REFERENCES

[1]. E.W. Dijkstra, “A note on two papers in connection with graphs,”

Numeriske Mathematics 1 pp.269-271 1959.
[2]. D.Eppstein, “Finding the k shortest paths,” SIAM journal on Computing

28(2) pp.653-674 1998.

[3]. R.W Floyd, “Algorithm97: Shortest paths, “Communications of the ACM
5 pp.345-357 1962.

[4]. A.A. Chien, J.H. Kim, “Planar-adaptive routing: low-cost adaptive

networks for multiprocessors,”J. ACM 42(1) pp. 91-123 1995.

[5]. W.J.Dally,H Aoki, “Deadlock-free adaptive routing in multicomputer

networks using virtual channels,” IEEE Trans. Parallel Distributed.

Systems 4(4) pp.466-475 1993.
[6]. J. Duato, “A necessary and sufficient condition for deadlock-free adaptive

routing in wormhole networks,”IEEE Trans.Parallel Distrib. Systems
6(10) pp.1055-1067 1995.

[7]. M. Koibuchi , A . Funahashi , A . Jouraku, H . Amano, “L-turn

routing:An adaptive routing in irregular networks,” Proc. International
Conference on Parallel Processing,” pp.374-383 Sep 2001.

[8]. F. Silla, J. Duato, “High –performance routing in networks of

workstations with irregular Topology,” IEEE Trans. Parallel Distrib.
Systems 11(7) pp. 699-719 2000.

[9]. N. J. Boden, et.al, “Myrinet:a gigabit-per-second local area network,”

IEEE Micro. 15(1) pp. 29-35 1995.
[10]. T. Kudoh, S. Nishimura, J. Yamamoto, H. Nishi,O. Tatebe,H.Amano,

“RHINET:A network for high performance parallel computting using

locally distributed computing,” Proc IWIA pp. 69-73 Nov 1999.
[11]. J.C.Martinez,J.Flich,A.Robles,P.Lopez,J. Duato, “Supporting adaptive

routing in IBA switches,” Systems Architect 49 pp. 441-449 2004.

[12]. Baransel C,Dobosiewicz W, Gburzynski p, “Routing in multihop packet
switching networks:Gb/s challenges,”IEEE Network 9(3) pp.38-61

1995.

[13]. Beaubrun R, Pierre S, “Routing algorithm for distributed communication
networks,” Proc 22nd IEEE Conference on Computer Networks,LCN 97

pp. 99-105 Nov 1997.

[14] Kershenbaum A, Kermani P,Grover GA, “MENTOR:an algorithm for
mesh network topotogical optimization and routing,” IEEE Trans Comm

pp.503-513 1991.

[15] Khasnabish B, “A new method for evaluating packet routing policies in
supra-high-speed metropolitan (or wide) area networks,”Comp Networks

ISDN Syst pp.195-2161993.

[16]. Suk-Gwon C, “Fair integration of routing and flow control in
communication networks,”IEEE Trans Commun 40(4) pp. 821-34 1992.

 [17] W. Stalling, High-Speed Networks: TCP/IP and ATM Design Princi-

ples. Englewood Cliffs, NJ: Prentice-Hall, 1998.
[18] M. K. Ali and F. Kamoun, "Neural networks for shortest path computation

and routing in computer networks," IEEE Trans. Neural Networks, vol. 4,

pp. 941-954, Nov. 1993.
[19] D. C. Park and S. E. Choi, "A neural network based multi-destination

routing algorithm for communication network," in Proc. Joint Conf.

Neural Networks, 1998, pp. 1673-1678.
[20] C. W. Ahn, R. S. Ramakrishna, C. G. Rang, and I. C. Choi, "Shortest path

routing algorithm using hopfield neural network," Electron. Lett., vol. 37,
no. 19, pp. 1176-1178, Sept. 2001.

[21] M. Munemoto, Y. Takai, and Y. Sato, "A migration scheme for the genetic
adaptive routing algorithm," in Proc. IEEE Int. Conf. Systems, Man, and

Cybernetics, 1998, pp. 2774-2779.

[22] J. Inagaki, M. Haseyama, and H. Kitajima, "A genetic algorithm for de-
termining multiple routes and its applications," in Proc. IEEE Int. Symp.

Circuits and Systems, 1999, pp. 137-140.

[23] Y. Leung, G. Li, and Z. B. Xu, "A genetic algorithm for the multiple
destination routing problems," IEEE Trans. Evol. Comput, vol. 2, pp.

150-161, Nov. 1998.

[24] G. Syswerda, "Uniform crossover in genetic algorithms," in Proc. 3rd Int.
Conf. Genetic Algorithms. San Mateo, CA: Morgan Kaufmann, 1989,

pp. 2-9.

 [25]. Courtois PJ,Semal P, “flow assignment algorithm based on the flow
deviation method,”Proc of the ICCC pp.77-83 1980.

[26]. Gavish B, “Topological design of computer networks-the overall design

problem,”Eur J Oper Res 58 pp. 149-72 1992.
[27]. Neumann I, “System A. For priority routing and capacity assignment in

packet switched networks,”Ann Oper Res 36 pp. 225-46 1992.

[28]. Lee S,Chang S, “Neural network for routing of communication networks
with unreliable components,” IEEE Trans Neural Networks 4(5) pp. 854-

63 1993.

[29]. Mehmet M,Kamoun F, “Neural networks for shortest path computation
and routing in computer networks,” IEEE Trans Neural networks 4(6)

pp.941-54 1993.

[30]. Moopenn A, Thakoor AP, Duong T, “A neural network for Euclidean
distance minimization,”Proc IEEE Int Conf Neural Networks 2 349-56

1988.

[31]. Internetworking Technology Handbook: Internet Protocols (IP), Cisco
Sytems, Inc., 2002.

[32]. Chyzy Mariusz,Kosinski Witold, “Evolutionary Algorithm for State

Assignment of Finite State Machines,”Proc IEEE of the Euromicro
Symposium on Digital System Design(DSD‟02) pp. 7695-99 2002.

[33] “Evolutionary Computation”, IEEE Transactions onVolume 6, Issue 6,

Dec 2002 Page(s): 566 – 579 Digital Object Identifier
10.1109/TEVC.2002.804323

[34] “Faster Genetic Algorithm for Network Path”, Yinzhen Li1 Ruichun He1

Yaohuang Guo2 ,The Sixth International Symposium on Operations
Research and Its Applications Pp 382-389 2000.

[35] G. Tufte and P. C. Haddow, "Prototyping a GA pipeline for complete
hardware evolution," in Proc. 1st NASA/DoD Workshop on Evolvable

Hardware, 1999, pp. 76-84.

[36] X. Hue, "Genetic algorithms for optimization: Background and appli-
cations,” Edinburgh Parallel Computing Centre, Univ. Edinburgh, Edin-

burgh, Scotland, Ver 1.0, Feb. 1997

[37] D. E. Goldberg, K. Deb, andj. H. Clark, "Genetic algorithms, noise, and the
sizing of populations," Complex Syst., vol. 6, pp. 333-362, 1992.

[38] G. Harik, E. Cantu-Paz, D. E. Goldberg, and B. L. Miller, "The Gambler's

ruin problem, genetic algorithms, and the sizing of populations," Evol.
Comput., vol. 7, no. 3, pp. 231-253, 1999.

[39] “Multiple processors and the computational resource is distributed among
these processors” Cantii-Paz, 2000a; Cantii-Paz, 1997.

[40] “Parallelization approaches „simple master-slave‟” Bethke, 1976; Grefenstette,

1981. [41] “Parallelization approaches „coarse-grained‟” Grosso, 1985;
Pettey, Leuze k, Grefenstette, 1987; Tanese, 1989.

