
 Volume 2, Issue 1, January 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper

 Available online at: www.ijarcsse.com

INTER-INTRA FAIRNESS SCHEDULAR FOR

RESOURCE MANAGEMENT IN GRID

ENVIRONMENT

Navjeet Kaur*, Harpal Kaur2, Satinder Pal Ahuja3
*
M.Tech. (Computer Science & Engineering)

IGCE, Punjab Technical University, Kapurthala – 144601 (Punjab)
2
Asstt.prof (Computer Science & Engineering), IGCE,

3
Associate Professor & HOD (CSE&IT), Indo Global College of Engineering

Abstract: Resource management is a vital task of grid computing environment. It is the responsibility of grid system to

ensure that all applications/clients/tasks requesting for resources are getting resources in a timely manner. Various

recourse allocation strategies are there which provide guidance for grid systems to make resource allocation

decisions. The detail paper will describes various Proportional share schedulers with O(1) overhead for resource

management in grid environment. The Proportional/fair share scheduler(s) ensures that resources are allocated to in

an efficient manner and this ensures fairness in resource allocation. Through this paper, we are also proposing a new

inter- intra fairness scheduler who integrates the features of fair share schedulers in an efficient way and will surely

contribute well in managing critical issues of scheduling jobs and resources in a smooth way. The detail paper will be

divided into four sections where the first section comprise a general introduction of the subject, second section

describe various proportional scheduling scheduler, third section contain our proposed model detail theory and finally

we summarise the paper with our future work.

Keywords: Fairness, Grid Environment, Inter-Intra Fairness Scheduler, Proportional Share Schedulers, Resource

Allocation, Resource Management.

1 Introduction

Resource management is one of the chaotic issues of

grid environment. For effective utilization of the

resources in grid systems, efficient application/task

scheduling methods are required. Task scheduling

algorithms are commonly applied by grid resource

managers to optimally dispatch tasks to grid resources.

Typically, grid users submit their own tasks to the grid

manager to take full advantage of the grid facilities. The

grid manager in a grid system tries to distribute the

submitted tasks amongst the grid resources in such a

way that the total response time is minimized.

Similarly, there is an additional issue of providing fair

share to each application of individual users according

to their priority by the grid manager.

There are various fair scheduling algorithms which

provided better proportional sharing accuracy.

However, the time to select a client for execution using

these algorithms grows with the number of clients. Most

implementations require linear time to select a client for

execution. In this paper, we discuss various

Proportional/fair scheduling methods which provided

better proportional sharing accuracy and O (1)

scheduling overhead. Also we propose a new efficient

Inter- Intra Fairness scheduler which integrates the

features of discussed proportional/fair scheduling

methods.

2 Background

This section discusses various fair scheduling methods

with high fairness accuracy and O(1) overhead. These

methods are basically developed for multiplexing time

shared resources among a set of clients C. Section 3.1

describe briefly about Virtual time round robin

scheduling method for efficient allocation of task to

different resources, section 3.2 discuss about Group

Ratio Round Robin, section 3.3 includes Dynamic error

based fair scheduling method, section 3.4 includes

Dynamic task scheduling method using service time

error and virtual finish time.

http://www.ijarcsse.com/

Volume 2, issue 1, January 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

2.1 Virtual Time Round Robin (VTRR)

The VTRR algorithm orders the client in the queue in

the order from largest to smallest share and executes the

first client for one time quantum. Once the first client

completed its time quantum then its counter is

decremented by one and its virtual finish time (VFT) is

incremented as

VFTi(t+Q) =

VFTi(t) + Q/Si

Where Q is the time quantum and Si is the share of the

client. Then the scheduler moves to the next client in

the run queue. At that time, we check for violation of

the time counter invariant which means if the counter of

current client is less than the next client then the next

client will be chosen over the current one and schedule

for one time quantum. If the time counter invariant is

not violated then scheduling decision is made using

VFT. VFT of the next client is compare with the Queue

Virtual Time (QVT) which is a measure of what a

client’s VFT should be if it has received exactly equal

to its share. This is called as VFT inequality which can

be represented as

 VFTi(t) –

QVT(t+Q) < Q/Si

If this comparison is true, the scheduler selects and

executes the next client in the queue for one time

quantum and the process continues for the rest of the

queue. If it is false, then the scheduler selects the first

client to execute. One scheduling cycle ends when the

time counter of all clients reaches zero.

2.2 Group Ratio Round Robin (GR
3
)

This method is further divided into two different

algorithms i.e. Intergroup GR
3

and Intragroup GR
3
.

It

uses an efficient grouping strategy by grouping clients

into one group with similar share values. This method

deals with choosing group from a list of groups for

scheduling. Groups are ordered in a from the largest to

smallest group share which is the sum of shares of all

clients in a group. It uses group ratio (GR) between the

groups to determine which group to select. The GR of

the last group is set to one and GR of rest of the groups

are greater than or equal to one. The GR for group G1

can be calculated as

GRG = group share

of G1/group share of G2

After selecting the group, the intragroup scheduling

method selects the current client to execute within the

group in a round robin manner that taken into accounts

for the amount of service each client has already

received. The method determines at the beginning of the

round which clients still have at least as much

remaining time to run in the scheduling cycle as their

proportional share of service, then run those clients

during the round. Given a client A with share SA and

counter CA in a group G with group share SG. the

method runs a client if the following inequality hold

when C
last

G > 0 :

SA/SG <=

CA/ C
last

G

The scheduling cycle ends when all the counters

become zero.

2.3 Dynamic error based fair scheduling method

This method also based on multiple queues time shared

systems. The scheduler orders the tasks in the form of

the queues. Queue size is obtained by dividing total no

of task with total no of available processor. Every queue

contains the tasks similar to its size. Every task is

assigned with its respective share value and the queue is

rearranged in the form of smallest to the largest share

value. The scheduler selects the first task from the

queue to run for one time quantum. When the first task

completed its one quantum, then the STE is calculated

for the current job. If

STE current

job > 0

is true then put the current job at the end of the queue.

Then calculate and compare the STE for the first job

and the second job in the queue. If

 STE first job > STE

second job

is true then the scheduler chose second job to execute

otherwise first job. If the STE of the current job is false

then the scheduler executes the current job again for one

time quantum and the process continues till all the jobs

have completed their execution.

2.4 Dynamic task scheduling method using service

time error and virtual finish time.

This method is combines the benefit of GR
3

and VTRR.

Tasks are maintained in the form of queues. Every

client is associated with its unique identity no, counter

value and weights/share. Weights are usually assigned

upon the priority of the client or how much he is willing

to pay for accessing resources. The first task is executed

for one time quantum and then its STE is calculated and

Volume 2, issue 1, January 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

compared with the STE of the task at the head of the

queue. If

 STE current job > STE

first job

is true, then execute the first job otherwise execute the

current job. After completion of every scheduling cycle,

VT and VFT are calculated for every task. Arrange

them in largest to the smallest order and scheduler

always choose the task to execute with the smallest

VFT. Scheduling cycle continues with the comparison

of STE and the process continues.

3 New Proposed “Inter- Intra Fairness Scheduler”

The method is an proportional share scheduler that

schedules task with O(1) time complexity. The method

is based upon multiple queues. We organise the clients

having similar priority level with different or similar

share/ weights into a single queue. Note that priority is

directly related to the weight that assign to the job. For

example, a job is given high share values only if it is

attain a high priority level. The share value we assign to

the different clients is based upon some important

parameters like

1. Cost he is willing to pay

2. Deadline for the application.

3. Number of resources required by the

application. (Resource Requirements)

Different combination of the above parameters can be

given different priority level. This depends upon system

to system requirement. The scheduling method is

divided into two parts which are

 Inter-queue scheduling: Queues are ordered

from the largest to smallest priority level with

different or similar share value into single

queue. Note the purpose of using different or

similar share is that some defined share value

range comes under same priority level like

share value with 1, 2, 3 comes under priority

level A, similarly share value with 4, 5, 6

comes under priority level B and so on. The

method assign similar priority on the basis of

cost the client is willing to pay for the

application and different or similar share value

on deadline or resource requirements. Queue

size is obtained by dividing total no of task

with total no of available processor. Every

queue contains the tasks similar to its size.

Every queue is associated with its queue ID,

queue counter, priority level, queue share

value, Virtual Finish Time (VFT) where queue

ID is the unique identification of the queue,

counter is like a timer of the queue which is

decremented after one scheduling cycle is

completed, and priority level is the level which

differentiates one queue from the other one on

the basis of their respective importance. Queue

share value is the total number of client share

within the queue which can be represented as

Queue total share value = [cleint
1
 share

value + cleint
2
 share value + cleint

3

 share value +

............... cleint
n
 share value]

Every queue is selected on the basis of their

VFT. To explain VFT, we first explain the

notion of VT i.e. Virtual time. The VT of a

queue is a measure of the degree to which a

queue has received its proportional allocation

for the jobs relative to other. When a queue is

executes, its VT advances at a rate inversely

proportional to the queue total share value. In

other words, the VT of a queue Q at time T is

the ratio of WQ (T) to SQ .

 VTQ (T) = WQ (T)/

SQ

Where WQ (T) is the amount of service

received by queue Q at time T and SQ is the

proportional share. Given a queue VT, the

queue VFT is defined as the VT the group

would have after executing the jobs within the

queue for one time quantum each.

 VFTQ (T) = 1/ VTQ

The method then schedules queues by selecting

the queue with the smallest VFT. Once the

queue is selected for execution its counter is

decremented and VFT is updated. If we denote

the system time quantum as TQQ, the current

queue share value as SQ and current queue

VFT as VFTQ , then VFTQ (t) is updated as

 VFTQ (t+TQ) =

VFTQ (t) +TQ/ SQ

 Then the scheduler moves to the queue from

the list of the queues.

 Intra-queue scheduling: Once the group

has been selected a job within the group is

selected to run on the basis of their Service

Time Error (STE). First client of the

selected queue is executed for one time

quantum. When the first task completed its

one quantum, then the STE is calculated for

the current job. The Service Time Error is

the difference between the amount time

allocated to the client during interval (t
1
, t

2
)

under the given algorithm, and the amount

of time that would have been allocated

under an ideal scheme that maintains perfect

fairness for all clients over all intervals. It is

Volume 2, issue 1, January 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

defined as Ei(t
1
, t

2
), for any clients i out of

the list of clients C where C= [i,j,…..] for

time interval T where t
1
 is the service

starting time and t
2
 is the service ending

time as

 Ei(t
1
, t

2
) = Wi(t

1
,t

2
) -

(t
2
-t

1
) Si/∑iSi

Or

 STE (Service Time Error) = ST given

by algorithm – ST of an ideal system

A positive service time error indicates that a

client has received more than its ideal share

over an interval; a negative error indicates that

a client has received less. If

STE current job > 0

is true then put the current job at the end of the

queue. Then calculate and compare the

 STE for the first job and the second

job in the queue. If

 STE first job > STE

second job

is true then the scheduler chose second job to

execute otherwise first job. If the STE of the

current job is false then the scheduler executes

the current job again for one time quantum and

the process continues till all the jobs have

completed their execution.

Figure 1: Pseudo code for Inter-Intra fairness scheduler

4 Future Work

Our future work will be based upon implementing

this inter-intra fairness scheduler on recently

developed GridSim based Alea simulator on QoS

parameters and tracing its behaviour with real

workload traces. Also, we will try to compare it

with one or more other scheduling method.

References

[1] Maruthanayagam and Uma Rani,” Grid Scheduling

Algorithm- A Survey”, International Journal of

Current ResearchVol. 11, pp.228-235, December, 2010.

[2]Erik Elmroth and Peter Gardfjall,”Design and

Evaluation of a Decentralized System for Grid-wide

Fairshare Scheduling”, Proceedings of the First

International Conference on e-Science and Grid

Computing (e-Science’05), IEEE 2005.

[3]Per-Olov Ostberg and Daniel Henriksson and Erik

Elmroth, “Decentralized, Scalable, Grid Fairshare

Scheduling (FSGrid)”, Future Generation Computer

Systems, March 2011.

[4]Suja Cherukullapurath Mana “Recourse

Management using a Fair Share

Scheduler”,International Journal of Computer Science

and Security (IJCSS), Volume (1): Issue (3), 2011.

[5]Fangpeng Dong and Selim G. Akl “Scheduling

Algorithms for Grid Computing: State of the Art and

Open Problems” Technical Report No. 2006-504,

Queen’s University Kingston, Ontario, January 2006.

[6] Jason Nieh, Chris Vaill, Hua Zhong “Virtual-Time

Round-Robin: An O(1) Proportional Share Scheduler”

Proceedings of the 2001 USENIX Annual Technical

Conference Boston, Massachusetts, USA ,June 25–30,

2001.

[7]Wong chun chang, Jason Nieh “ Group Ratio Round

Robin: An O(1)Proportional Share Scheduler”

Technical report CUCS -012-03, Columbia university,

April 2003.

[8]Daphne Lopez, Kasmir raja “A Dynamic error based

fair scheduling algorithm for a computational grid”,

Input: A set of Queues Q where Q = [Q1, Q2,

Q3....Qn]. Every queue contains N number of jobs

from the set of total jobs T which can be allocated to

M number of available processors.

Output: Schedule T onto M

1. Create multiple queues set Q.

2. While there are unexecuted queue do

3. For each queue

4. Calculate VFT, VFT=1/VT where

VT(T) = W (T)/ S

5. Chose the queue with the smallest VFT

called it as current_queue

6. For each current_queue, Qi in Q

7. Queue_Size = Remaining T/ Available

M

8. Remove Queue_Size jobs from T and

enqueue them to Qi

9. While there are jobs in the queue do

10. Execute the first job from Qi for one

time quantum to the available

resource(s) which is called as

current_job.

11. Calculate the STE for the current_job

12. If STE current job > 0 is true

13. Then, put current_job at the end of the

queue.

Volume 2, issue 1, January 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

Journal of Theoretical and Applied Information

Technology, 2005-2009.

[9]S. V. Kasmir Raja and Daphne Lopez “Dynamic task

scheduling using service time error and virtual finish

time”, Journal of Engineering and Computer

Innovations Vol. 2(5), pp. 90-97 May 2011.

[10] Saeed Parsa, Reza Entezari-Maleki ,”RASA: A

New Grid Task Scheduling Algorithm”, International

Journal of Digital Content Technology and its

Applications Volume 3, Number 4, December 2009.

