
 Volume 2, Issue 1, January 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Container Yard Route Planning System
 D.M.H.U. Dissanayake Saluka Kodithuwakku

 Department of Computer Science and Statistics, Department of Computer Science and Statistics,

 Faculty of Science, Faculty of Science,

 University of Peradeniya, University of Peradeniya,

 Sri Lanka. Sri Lanka.

Abstract - This research introduces a system that plans routes for container carriers of a container yard in an efficient and a

suitable way using artificial intelligence. Once the starting point and the destination point is specified by the user, the container

carriers find the best possible path to reach its destination avoiding all the obstacles that it may encounter on its way. This

system also provides the user the ability of specifying storage areas at runtime since ad hoc storage areas might be created.

Special collision avoidance techniques are used for container carriers to avoid collision with each other.

Keywords – Path-finding, route planning, search algorithms, container carrier automation, collision avoidance.

I. INTRODUCTION

The Container Yard Route Planning System can be

considered as a part of automating container carriers in a

container yard. Installing sensory systems and route

planning become the two major areas of importance,

when automating container carriers. In this research,

what is proposed is a route planning system for container

carriers in a container yard, that can be used as the route

planning system for a container carrier automation

system.

A container yard is an area that is designated for

building, repairing, outfitting, and maintaining boats,

ships, and other sea bound vessels. Apart from that,

container yards also handle loading and unloading cargo

ships, and storing cargo in wide land spaces inside the

yard.

These cargo mostly come in the form of containers.

Container carriers or trucks are used to transport the

containers inside the land area. Inside a yard, transporting

containers can take place in different forms containers

can be moved to storage areas from the vessel or ship

(unloading), or it can be moved from the storage areas to

the ships (loading).

If the container trucks were automated, the process

would be more efficient and time-saving. Automation

thus functions as a useful mechanism in a process where

time becomes a crucial factor that decides the cost of the

whole process.

II. METHODOLOGY

As the first step taken at the start of this project, the

shortest path was found using Dijkstra’s Algorithm, for

a 4x4 grid defining starting point and destination point.

A. Dijkstra's algorithm

Dijkstra's algorithm solves the single-source

shortest-path problem when all edges have non-negative

weights. It is a greedy algorithm and similar to Prim's

algorithm. Algorithm starts at the source vertex, s, it

grows a tree, T, that ultimately spans all vertices

reachable from S. Vertices are added to T in order of

distance i.e., first S, then the vertex closest to S, then the

next closest, and so on. Following implementation

assumes that graph G is represented by adjacency lists

[5].

 In the first step all the edges of the grid were given

equal weight values. So there may be more than one

shortest path s, out of which one of them will be selected

as the shortest path.

 As the second step of the process, the grid is

widened and obstacles are introduced to junctions, so that

the vehicle may take a different path rather than the one

with obstacles.

 Next, obstacles similar to storage areas are

introduced in between the junctions as shown in the fig.1

as a result of which 3 kinds of junctions: 4-directional, 3-

directional, 2 directional are created as shown in the fig.

2. These junctions too can be categorized into different

types of junctions.

 Fig. 1. Introducing obstacles in between junctions

http://www.ijarcsse.com/

Volume 2, issue 1, January 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

Fig. 2. Junction types and sub-categories.

An attribute is introduced to the junction class in

order to hold the direction, for which a booloean array is

used. As the next step, the grid was expanded and two vehicles were introduced. These containers may travel to different destinations starting from the same point or different points. When the grid is expanded the Dijkstra’s algorithm becomes unsuitable since it does a blind search thereby consuming a lot of time waste of necessary resources
6
. To overcome this drawback A* ("A star") algorithm is

introduced for path finding.

B. A* Algorithm

A* algorithm is a graph/tree search algorithm that

finds a path from a given initial node to a given goal

node It employs a "heuristic estimate" h(x) that gives an

estimate of the best route that goes through that node. It

visits the nodes in order of this heuristic estimate. It

follows the approach of best first search [6] .

The A* algorithm has three important properties [7]:

 It will always return the least expensive path if a

path exists to the destination, other algorithms may

find a path faster but it is not necessarily the "best"

path we can take.

 A* uses a heuristic (a "guess") to search nodes

considered more likely to lead to the destination

first, allowing us to often find the best path without

having to search the entire map and making the

algorithm much faster.

 A* is based on the idea that each node has some

cost associated with it. If the costs for all nodes are

the same then the best path returned by A* will also

be the shortest path but A* can easily allow us to add

different costs to moving through each node.

A* creates two lists of nodes; a closed list containing

all the nodes we have fully explored, and an open list

containing all the nodes we are currently working on (the

perimeter of our search). Each node will have 3 values

associated with it; F, G, and H. Each node will also need

to be aware of its parent so we can establish how we

reached that node.

G the exact cost to reach this node from the starting

node.

H the estimated (heuristic) cost to reach the

destination from here.

F = G + H As the algorithm runs the F value of a node

tells us how expensive we think it will be to reach our

goal by way of that node.

1) Heuristics: Selecting an appropriate heuristic

is critical in determining the performance A* can

achieve. Ideally we would select a value of H exactly

equal to the cost of reaching our destination. If we can

do so then A* will only follow the best path and never

waste time exploring extra nodes. Of course we don't

normally know the exact cost to reach our goal, finding

it is the reason we are running a path finder in the first

place. We can choose a method which will give us the

exact value some of the time, such as when traveling in

a straight line with no obstacles, and A* will be

perfectly efficient in such cases. If we choose a value

for H greater than the actual cost of reaching our goal

we will allow A* to search faster but less accurately and

we can no longer be certain of finding a path to the

goal. Therefore we normally want to make certain that

H is never accidentally greater than the real cost.

If we select a value of H less than the actual cost A*

will always find the best possible path. However the

lower our value of H the longer A* will take to complete

its search. In the worst case of H = 0 our A* will give the

same performance as Dijkstra’s algorithm [7].

Manhattan distance: Initial heuristic, the Manhattan

distance:

H = | (Xgoal – Xstart) | + | (Ygoal – Ystart) |

(1)

Xstart = X co-ordinate of the starting point

Xgoal = X co-ordinate of the ending point

Ygoal = Y co-ordinate of the ending point

Ystart = Y co-ordinate of the starting point

At the initial phase which uses the A* algorithm, the

Manhattan distance is used as the heuristic. Here when a

vehicle searches a path and after finding it, the junctions

of the path will be unavailable for the other vehicle. In

simple words a path of one vehicle will be locked for the

other. Once a vehicle finds this path, this path will be

viewed as an obstacle for the other vehicle. A first come-

first serve method is used to lock paths. This step is

removed at the next stage.

Euclidean distance: At the next phase the Euclidean

distance is introduced as the heuristic, to improve the

result. This is because the Euclidean distance would

consider using both rectilinear and diagonal paths,

whereas the Manhattan distance would only consider

using the rectilinear path, making the process less

efficient and more time consuming. But still it takes a

considerably long time to find this path.

(2)

As mentioned before, the time factor plays a critical

role in this system. One way of minimizing the time

factor is to reduce the time taken to find the path as much

as possible. Although except for some cases the

travelling time is reduced by using the Euclidean distance

Volume 2, issue 1, January 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

as the heuristic, rather than the Manhattan distance, it is

noticeable that in both cases a considerable amount of

time is consumed to find the path.

To minimize the time taken to find the path another

heuristic is introduced to the system: the Euclidean

squared distance.

Euclidian Squared Distance: The Euclidean Squared

distance metric uses the same equation as the Euclidean

distance metric, but does not take the square root. As a

result, clustering with the Euclidean Squared distance

metric is faster than clustering with the regular Euclidean

distance[9].

H= (Xgoal – Xstart)
2
 + (Ygoal – Ystart)

2

(3)

When Euclidean squared distance is used it can be

observed that the time taken to find the path is

considerably low.

C. Methods for collision avoidance

The second most important thing is to avoid various

kinds of collisions that may happen during the movement

of the trucks. Mainly there are two kinds of collisions.

 Collisions with Container Storage Areas,

buildings and static machinery like cranes

 Collisions with moving objects (other

container carriers)

The first kind of collision is avoided at the time the

truck finds the path, since the storage area buildings and

cranes are taken as predefined obstacles. The main

concern therefore becomes the second type of collision

which cannot be predefined at the time the system finds a

path. As a solution to this problem several steps are taken

considering secondary collisions of the type two.

1) Avoiding collision with moving objects:

Collisions with moving objects, mainly with other

container carriers, can be sub-categorized into three .

 Side-to-Side collisions

 Head-to-Head collisions

 Back-to-Head collision

Side-to-Side collisions: These kinds of collisions happen

when two containers meet at an angle, at the same time,

at a junction. These collisions seldom happen, but there is

a possibility for these kinds of collisions to happen. In

order to avoid these collisions, either, one of the trucks

can be stopped to let the other pass or one truck can be

directed onto another path. But taking the vehicle through

another path can sometimes be costly since A* algorithm

has already found the best possible path. Stopping the

vehicle and staying for a moment until the other vehicle

passes is a more practical solution than taking another

path in these kinds of situations.

A problem may arise when deciding which vehicle

should be stopped and which one should be allowed to

pass the junction. To avoid this confliction, a priority

level is introduced for each vehicle. The priority level of

a vehicle will be set to zero by default and will be

incremented each time it stops so that out of the two

vehicles, the vehicle with the most number of stops will

be allowed to pass. Apart from that we can initialize a

high priority level for a vehicle if it is an urgent delivery,

so that it will not be stopped until it meets a vehicle with

a higher priority level. Assume that two vehicles with the

same priority level met at a junction. If something of this

sort happens the distance that the vehicle has to travel to

reach the destination is calculated for both the vehicles,

and the vehicle with the longer distance is allowed to

pass, while the priority level of the other vehicle is

increased

After the paths are assigned to the trucks, the

collisions can be detected by examining the arrival time

of each vehicle if both the vehicles pass the same

junction.

 Traverse through both paths and find if any

node’s,

 (Xpath1=Xpath2) AND (Ypath1=Ypath2)

 If found a point, check the arrival time of each

vehicle to the point.

 If tarrival of vehicle 1 = tarrival of vehicle 2

collision detected.

 Check the traveling direction of both vehicles.

If directions are not at a 180
0

degree angle

Side-to-Side collision detected.

 Check the priority levels of the vehicles Pr

vehicle1 , Pr vehicle2

 If,

 Pr vehicle1 > Pr vehicle2 allow vehicle 1

to pass and increase Pr vehicle2

 Pr vehicle2 > Pr vehicle1 allow vehicle

2 to pass and increase Pr vehicle1

 Pr vehicle1 = Pr vehicle2 allow vehicle

with longer distance to reach the

destination to pass and increase the

priority level of the other.

Head-to-Head collisions: These kinds of collisions are

more likely to happen since there is a great possibility of

the two trucks taking the same path due to traffic. When

these kinds of collisions take place, we cannot apply the

algorithms used in the previous case, because we cannot

avoid a head-to-head collision by merely stopping a

vehicle.

As a solution for these kinds of collisions, we could

either switch tracks of one of the trucks or direct one

truck to go around the other, once the collision is

detected as shown in the fig.3. Both these mthods can be

utilized in order to avoid the collision.

Fig. 3. Avoiding Head-to-Head collisions

Here the same criteria followed at the previous

situation is applied in terms of the priority level. The

vehicle with the lower priority level will amend its track

Volume 2, issue 1, January 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved

accordingly while increasing its priority, and if by any

chance the priority levels are equal then the decision is

made using distance measurements to the destination of

each vehicle.

 The vehicle with the low priority level changes its

path accordingly while increasing its priority level

 If the two vehicles are equally prioritized the

vehicle with the shorter distance to its destination

changes its path while increasing its priority level.

After the Paths are assigned to the trucks, the

following is used to detect the Head-to-Head collisions.

 Traverse through both paths and find if any

node’s,

 (Xpath1=Xpath2) AND (Ypath1=Ypath2)

 If found a point, check the arrival time of each

vehicle to the point.

 If t arival of vehicle 1 = t arrival of vehicle 2

collision detected.

 Check the traveling direction of both vehicles.

If directions are at a 180
0

degree angle and

directions are pointing each other Head-to-Head

collision detected.

 Check the priority levels of the vehicles Pr

vehicle1 , Pr vehicle2

 If,

 Pr vehicle1 > Pr vehicle2 change path of

vehicle 2 to and increase Pr vehicle2

 Pr vehicle2 > Pr vehicle1 change path of

vehicle 1 and increase Pr vehicle1

 Pr vehicle1 = Pr vehicle2 change path of

the vehicle with shorter distance to reach

the destination and increase the priority

level.

Back-to-Head Collisions: These types of collisions can

happen when two vehicles go in the same direction on

the same track. If the velocity of the vehicle in the front

is lower than the velocity of the vehicle at the back, these

vehicles will collide.

But, since this system is designed for auto-piloted

container careers that are travelling in the same velocity,

these kinds of collisions do not happen unless the starting

point of both vehicles is the same. In case the starting

positions of the vehicles are the same, the vehicle with

the longer path will be made to travel first, while the

others will start moving afterwards, thus avoiding a back-

to-head collision.

 Check the Starting nodes of both vehicles,

(X1=X2) AND (Y1=Y2)

 Collision detected.

Check the priority levels of the vehicles Pr

vehicle1, Pr vehicle2

 If,

 Pr vehicle1 > Pr vehicle2 allow vehicle 1 to

go and increase Pr vehicle2 and send it next

 Pr vehicle2 > Pr vehicle1 allow vehicle 2 to

go and increase Pr vehicle1 and sent it next

 Pr vehicle1 = Pr vehicle2 allow vehicle with

longer path to start travelling, increase the

priority level of the other vehicle and start

it next.

2) Assigning obstacles on the container yard:

There are several container storage areas, cranes, etc. in

a container yard. There are some dedicated areas for the

storage of containers, and if these areas are full some

other spacious place in the container yard also might be

used as a storage area. The dedicated areas can be

predefined, but the second type of storage areas cannot

be predefined. So the system provides an option to

define temporary storage areas that the user desires.

III. CONCLUSION

The objective of this system is to provide a route

planning system for automating containers in a container

yard. That is to move the containers from one place to

another without any kind of a collision. All the above

objectives are met successfully and proven with a

simulation of a container yard route planning system.

This system can be used as a route planning system in an

automated container yard with necessary hardware

installations like installing sensory systems to automate

the container carriers. Hardware installations that are

required to automate the container carries have not been

included in the research.

We can use improved heuristics and different path

finding algorithms in order to achieve more efficiency.

REFERENCES

[1] RODNEY LAY, Mitretek Systems ,LYLE SAXTON,

Transportation
 Consultant, Vehicle Highway Automation Directions,

Challenges,

 and Contributing Factors. (January 2011)
[2] cartech blog, reviews,http://reviews.cnet.com/8301-13746_7-

2000066648.html(January 2011)

[3] inro robotic vehicle automation, case Study ,
 http://www.inro.co.nz/case-study/fonterra-kauri/ (January 2011)

[4] Machinery Automation,

 www.machineryautomation.com.au/automation.html (January
2011)

[5] http://www.personal.kent.edu/~rmuhamma/Algorithms/

MyAlgorithms/
 GraphAlgor/dijkstraAlgor.htm (February 2011)

[6] Merin Puthuparampil, Report Dijksra’s algorithm.

 http://cs.nyu.edu/courses/summer07/G22.2340-001/Presentations/
 Puthuparampil.pdf (February 2011)

[7] Game

Gardens,http://wiki.gamegardens.com/Path_Finding_Tutorial
 (March 2011)

[8] http://www.edenwaith.com/products/pige/tutorials /a-star.php

 (March 2011)
[9] http://www.improvedoutcomes.com/docs/WebSiteDocs/Clustering/

Clustering_Parameters/Euclidean_and_Euclidean_Squared_Dis
tance_

 Metrics.htm (March 2011)

