Performance Enhancement of Rayleigh Flat Fading Channel through BER Reduction

Sagar Jain#1, Anand Vardhan Bhalla#2

#1M.Tech scholar, Ojaswini Institute of Management and Technology, Damoh, Madhya Pradesh, India.
#2Assistant Professor, Ojaswini Institute of Management and Technology, Damoh, Madhya Pradesh, India.

Abstract—Wireless communication is a type of data communication that is performed and delivered wirelessly. This is a broad term that incorporates all procedures and forms of connecting and communicating between two or more devices using a wireless signal through wireless communication technologies and devices. Now-a-days the requirements of wireless communication are to have high voice quality, high data rates, multimedia features, lightweight communication devices etc. But the wireless communication channel suffers from much impairment. One of them is fading which is due to the effect of multiple propagation paths, and the rapid movement of mobile communication devices. In a typical wireless communication environment, multiple propagation paths often exist from a transmitter to a receiver due to scattering by different objects. Signal copies following different paths can undergo different attenuation, distortions, delays and phase shifts. So, this is necessary to reduce the problem of fading, but not at the cost of additional bandwidth. This paper deals with the performance enhancement of Rayleigh flat fading channel by reduction of Bit Error Rate.

Keywords—Communication, Fading, Diversity, Fading channels, Wireless Communications, WLAN.

I. INTRODUCTION

The term wireless has been used twice in communications history, with slightly different meaning. It was initially used from about 1890 for the first radio transmitting and receiving technology, as in wireless telegraphy, until the new word radio replaced it around 1920. The term was revived in the 1980s and 1990s mainly to distinguish digital devices that communicate without wires, such as the examples listed in the previous paragraph, from those that require wires or cables. This became its primary usage in the 2000s, due to the advent of technologies such as mobile broadband, Wi-Fi and Bluetooth. There is a great role of wireless communication on our life. The first example which changes our life-style is the mobile phone. Mobile phones have evolved from the simple phones for voice-calling in 1970s to present smart-phones with computer-like functionality. The second example is wireless local area networks (WLAN), the so-called Wi-Fi. Equipped with a WLAN device, a laptop or desktop computer can connect easily to the Internet without the use of wires. As WLAN devices have been installed in many personal computers, video game consoles, mobile phones, printers, and other peripherals, and virtually all laptop or palm-sized computers. The third example is the Global Positioning System (GPS), a space-based global navigation satellite system which provides reliable location and time information in all weather and at all times anywhere on or near the Earth. With the navigation of GPS, we can drive easily in any cities. GPS has become a useful tool for map-making, land surveying, commerce, scientific uses, tracking and surveillance, and hobbies such as geo-caching and way-marking.

II. DIGITAL COMMUNICATION SYSTEMS

Figure 1 illustrates a general block diagram for a digital communication system. In this diagram, digital data from a source are encoded and modulated for transmission over a channel. At the other side, the data are extracted by demodulation, decoding, and then sent to a sink. The encoder can be divided into two blocks, namely the source encoder and the channel encoder.

![Block diagram of a digital communication system.](image_url)
In some digital communication systems, channel coding and modulation are combined together; this is called coded modulation. In general, there are two main constraints in communication systems, the available spectrum (or bandwidth) and the power required for data transmission. The bandwidth is becoming a rare commodity with the demand of high speed and high quality of service (QoS) for wireless communications. In this paper M-ary phase shift keying (M-PSK) used for improving BER performances.

III. M-ARY PSK (MPSK)

In an M-ary signaling scheme, two or more bits are grouped together to form symbols and one of M possible signals, \(s_1(t), s_2(t), \ldots, s_M(t) \) is transmitted during each symbol period of duration \(T_s \). Usually, the number of possible signals is \(M = 2^n \) where \(n \) is an integer. M-ary modulation schemes have better bandwidth efficiency but they have less power efficiency. For example, a 16-PSK system requires a bandwidth that is \(\log_2{16} = 4 \) times smaller than a BPSK system, whereas its BER performance is significantly worse than BPSK since in the signal constellation the signals are packed more closely. In M-ary PSK, the carrier phase takes on one of M possible values, namely \(\Theta_i = 2(i-1)\pi/M \), where \(i = 1, 2, \ldots, M \). The modulated waveform can be expressed as

\[
S_i(t) = \sqrt{\frac{2E_s}{T_s}} \cos(2\pi f_c t + \frac{2\pi}{M} (i - 1)), \quad 0 \leq t \leq T_s, \quad i = 1, 2, \ldots, M
\]

Where \(E_s = (\log_2 M) E_b \) is the energy per symbol and \(T_s = (\log_2 M) T_b \) is the symbol period.

IV. DIVERSITY TECHNIQUES

Diversity technique is used to decreased the fading effect and improve system performance in fading channels. In this method, we obtain L copies of the desired signal through M different channels instead of transmitting and receiving the desired signal through one channel. The main idea here is that some the signal may undergo fading channel but some other signal may not. While some signal might undergo deep fade, we may still be able to obtain enough energy to make right decision on the transmitted signal from other signals. There is a number of different diversity which is commonly employed in wireless communication systems. Some of them are following:

1. Multipath/frequency diversity.
2. Spatial/space diversity.
3. Temporal/time diversity.
4. Polarization diversity.
5. Angle diversity.
6. Antenna diversity.

V. CONCEPTS OF DIVERSITY COMBINING TECHNIQUES

It is important to combine the uncorrelated faded signals which were obtained from the diversity branches to get proper diversity benefit. The combining system should be in such a manner that improves the performance of the communication system. Diversity combining also increases the signal-to-noise ratio (SNR) or the power of received signal. Mainly, the combining should be applied in reception; however it is also possible to apply in transmission. There are many diversity combining methods available but only three of them are prevalent.

1. Maximal ratio combining (MRC)
2. Equal gain combining (EGC)
3. Selection combining (SC)
4. The combining processes which use to combine multiple diversity branches in the reception, has two classes such as post-detection combining and pre-detection combining. The signals from diversity branches are combined coherently before detection in pre-detection combining. However, signals are detected individually before combining in post-detection. The performance of communication system is the same for both combining techniques for coherent detection. However, the performance of communication system is better by using pre-detection combining for non-coherent detection. It does mean that there is no effect in performance by the type of combining procedure for the coherent modulation case. The post-detection combining is not complex in non-coherent detection, results very common in use. There is a difference in system performance when used pre-detection combining and post-detection combining for non-coherent detection such as frequency modulation (FM) discriminator or differential detection schemes. Moreover, the terms pre-detection and post-detection are also indicates the time of combining means when the combining is performed, before or after the hard decision.
VI. PERFORMANCE MEASURE OF COMMUNICATION SYSTEM

Some key measures of performance related to practical communication system design are as follows:
1. Signal to noise Ratio (SNR): It is a vital performance measure of a communication system. This performance measure is usually measured at the output of the receiver and indicates the overall quality of the system. For wireless communication system due to the presence of fading, the instantaneous SNR is a random variable.
2. Outage Probability: It is another important measure of performance to calculate the quality of service provided by wireless systems over fading channels and is defined as the probability that SINR falls below a certain threshold.
3. Average Bit Error Probability (BEP): It is one of the most informative indicators about the performance of the system.
 This measure can be obtained by averaging the conditional (on the fading) BEP over fading statistics.
4. Bit Error Rate (BER): In digital modulation techniques, due to some noise, interference, and distortion the received bits are altered. So bit error rate is defined as the no of error bits divided by total no of transmitted.

\[
\text{Bit Error Rate (BER)} = \frac{\text{No of bits in error}}{\text{Total no of transferred bits}}
\]

The performance of modulation is calculated measuring BER with assumption that system is operating with Additive white Gaussian noise. Modulation schemes which are capable of delivering more bits per symbol are more immune to errors caused by noise and interference in the channel. Moreover, errors can be easily produced as the number of users is increased and the mobile terminal is subjected to mobility. Thus, it has driven many researches into the application of higher order modulations.

VII. STEPS INVOLVED IN THE PROPOSED ALGORITHM

Steps involved in the proposed system are:
1. At the transmitter Bernoulli binary generator is used to generate binary bits these binary bits are given as input to MPSK modulator. After which the signals are transmitted using antennas (In this work transmitter space diversity is used). These signals are transmitted over Rayleigh Flat fading channel.
2. At the receiver the signals from different transmitting antennas are received and these signals are combined using MRC diversity combining method.
3. The combined output is then given to MPSK demodulator.
4. BER is calculated for the received bits.

From the simulation diagram (figure 2) it is can be seen that on the transmitter side there is a Bernoulli binary generator, which generated binary bits. These binary bits are given to M ary phase shift keying modulator. After modulation these bits are transmitted through L antenna channels (Transmitter space diversity is used). At the receiver outputs from L antennas are combined using Maximal Ratio Combining (MRC), after that MRC output is given to m ary PSK demodulator. Bit Error Rate (BER) is computed for the proposed system.

Figure 2: Simulation flow diagram.

VIII. SIMULATION RESULTS

The proposed system simulation outputs are as under.
From the figure above it can be seen that bit error rate decreases with the increase in the order of diversity. The systems are analysed for the SNR values of 2dB, 4dB, 6dB, 8dB and 10dB.

IX. CONCLUSION

The objective of this work is to enhance performance of Rayleigh flat fading channel by bit error rate reduction. From the results it can be concluded that the proposed system has a better performance (reduced BER) over Rayleigh flat fading channel at SNR of 2dB, 4dB, 6dB, 8dB and 10dB. Diversity of order 2, 3, 4, 6 and 8 are analysed, it can be observed that with the increase in the order of diversity the BER goes on decreasing, but due to some limitations the diversity order can be increased up to a limit and it also depends on the application for which the system is being used.

REFERENCES

[7]. Bing-Hung Chiang, Ding-Bing Lin, Jung-Lang Yu, “OFDM in Multipath Mobile Fading Channel”, Institute of Computer, Communication and Control, National Taipei University of Technology, Taiwan, R.O.C.

[27]. M. Mirahmadi, Member, IEEE, A.Al-Dweik, Senior Member, IEEE, and A.Shami, Senior Member, IEEE, “BER Reduction of OFDM Based Broadband Communication Systems over Multipath Channels with Impulsive Noise”, IEEE Transactions on Communications, vol.61, No.11, November 2013.

