A Comparison of New Sepic Voltage-Doubler Converter for Both BLDC and DC Motor Drives

P. Dhanasekaran¹, S. Shanmugam²

¹, ²Assistant Professor, Dept. of Electrical & Electronics Engineering, Sri Venkatesa Perumal College of Engineering and Technology, JNTUA, Anantapur, Andhra Pradesh, India
E-Mail: dhanasee891@gmail.com¹, gsshansvn@gmail.com²

Abstract: In this paper, Single-Ended Primary Inductor Converter (SEPIC) fed DC motor is proposed. Soft-switching technique such as Zero-Voltage-Switching (ZVS) and Zero-Current-Switching (ZCS) operation plays a vital role in high voltage applications. Zero-Current-Switching (ZCS) operation achieved due to resonance between the resonant inductor and the capacitor by using output diode and its reverse-recovery loss is reduced. Zero-Voltage-Switching (ZVS) operation is achieved by using coupled inductor and auxiliary inductor. The model has been simulated through MATLAB/SIMULINK using Diode Bridge, SEPIC topology and closed loop BLDC and DC motor load. The prototype is modeled with input side Diode Bridge Rectifier, SEPIC Topology and Microcontroller ATMEL 89S52. The soft switching scheme for the proposed topology is developed with closed loop motor load. The converter achieves high efficiency due to soft-switching and output voltage is achieved twice the input voltage. The presented analysis is verified by a prototype of 33 kHz and 55W converter. Also, the comparative results of simulated and prototype are generated and are shown.

Index Terms: - SEPIC topology, optocoupler, power amplifier, zero-voltage-switching (ZVS).

I. INTRODUCTION

SEPIC converter mainly used for their non-inverting output voltage polarity, non-pulsating input current and for their efficiency. P-MOSFET is high voltage rated power semiconductor device because of their on-state Drain-Source Resistance. So, it causes higher conduction loss. Therefore, the overall efficiency can be improved if the voltage stress is reduced with decrease in current. To reduce the voltage stress and increase the voltage gain, voltage multiplier technique is proposed. In order to reduce the volume and weight of the converter, soft-switching techniques such as zero-voltage-switching (ZVS) and zero-current-switching (ZCS) are necessary. However, switching losses and electromagnetic interference noises are significant in high-frequency operation. Therefore, various soft-switching techniques have been introduced. Among them, the active clamp technique is often used to limit the voltage spike effectively, achieve soft-switching operation and to increase the system efficiency.

SEPIC converter has low input current ripple but bulk inductor is used in order to minimize the current ripple. It is one of important requirement due to the wide use of low voltage sources such as batteries, super capacitors, and fuel cells. Two switches can operate with soft switching. However, three power diodes and three separate inductors are utilized. The voltage stress of the power switches is the sum of the input voltage and the output voltage. Soft-switching operation is achieved by two power switches and two magnetic components. It has a pulsating input current and an additional filter is required in the input stage to suppress the input current ripple. Hence, magnetic component can be increased in number.

The switch consists of two power MOSFET’s. The voltage stress of the switches in the conventional can be found in proposed SEPIC converter. Parasitic voltage across the switch is minimized by using a snubber circuit.
In proposed SEPIC converter, auxiliary switch and a clamp capacitor are added. The both inductor are utilized to obtain ripple-free input current and achieve ZVS operation of the main and auxiliary switches. The proposed converter achieves high efficiency due to soft-switching characteristics of power semiconductor devices. By utilizing the voltage multiplier technique, voltage stresses of the power switches and diode are reduced by half and the reverse-recovery loss of the output diode is significantly reduced due to the resonance between the resonant inductor and the capacitor in the multiplier circuit.

II. ANALYSIS AND CIRCUIT CONFIGURATION OF PROPOSED CONVERTER

The conventional SEPIC converter is shown in Fig. 1. The circuit diagram of the proposed ripple-free modified SEPIC converter is shown in Fig. 2. In the proposed converter, the resonant inductor L_r and the active clamp cell consisting of the auxiliary switch S_a and the clamp capacitor C_c are added to the conventional SEPIC converter. The coupled inductor L_c is modeled as the magnetizing inductance L_m and a transformer is high-frequency and made up of Ferrite-core with a turn ratio of 1:2, 40V and 2A. The diodes D_a and D_m are the intrinsic body diodes of the auxiliary switch S_a and the main switch S_m. The capacitors C_a and C_m are their parasitic output capacitances. The duty ratio D is based on the main switch S_m and the switches S_a and S_m are operated asymmetrically. To simplify the steady-state analysis, it is assumed that those capacitors C_1, C_c, and C_0 have large values and the voltage ripples across them can be ignored. The magnetizing inductance current i_{L_m} is approaching to its minimum value and the auxiliary inductor current i_{L_a} is approaching to its maximum value. And the output diode is not conducting.

2.1 Soft-Switching Operation

The auxiliary switch S_a is turned OFF. Then, the energy stored in the magnetic components such as L_m, L_r and L_a starts to charge C_a and discharge C_m. Therefore, the voltage $V_s a$ across the auxiliary switch S_a starts to rise from zero and the voltage $V_s m$ across the main switch S_m starts to fall from V_c. Then, the body diode D_m is turned ON. After that, the gate signal is applied to the switch S_m and the channel of S_m takes over the current flowing through D_m. Since the voltage $V_s m$ is clamped as zero with turn-on of D_m before the switch S_m is turned ON, zero-voltage turn-on of S_m is achieved.
The input voltage is applied to L_m and the current i_{Lm} increases linearly from its minimum value. The main switch S_m is turned OFF. Then, the voltage V_{sm} increases and the voltage decreases from V_{cc} at the same time due to the energy stored in the magnetic components. Then, the body diode D_a turned ON. After that, the gate signal is applied to the switch S_a and the channel of S_a takes over the current flowing through D_a. Since the voltage V_{sa} clamped as zero before the switch S_a turned ON, zero-voltage turn-on of S_a achieved. With the turn-on of S_a, the output diode D_a starts to conduct. Then the resonance occurs between the resonant inductor L_r and the capacitor C_1. The output diode current decreases and the zero-current turn OFF of the diode D_o are achieved. Since the current changing rate of D_o is controlled by a resonant manner, its reverse-recovery problem is reduced.

III. DESIGN PARAMETER

3.1 INPUT CURRENT RIPPLE

The input current i_{in} given by

$$i_{in}(t) = i_{Lm}(t) + i_p(t) \quad (1)$$

The ripple component of i_{in} can be removed by satisfying the following condition:

$$L_a + L_r = n(1 - n)L_m \quad (2)$$

Where, n is turns ratio. Under the condition of (2), the input current i_{in} is constant.

3.2 ZVS CONDITION

The ZVS condition for S_a is given by

$$I_{Lm1} - (1 - n)I_{La2} > 0 \quad (3)$$

Since I_{Lm1} is always positive and I_{La2} is always negative for $n < 1$, the condition of (3) is always satisfied for $n < 1$. Therefore, the ZVS of S_a is always achieved.

Similarly, for the ZVS condition for S_m, the following condition should be satisfied

$$-I_{Lm2} + (1 - n)I_{La1} > 0 \quad (4)$$

$$V_{D_o,max} = V_o + \frac{(1 - n)V_{La}L_a}{L_a + L_r} + nV_{in} - V_{Cc} \quad (5)$$

IV. DESCRIPTION OF A PROPOSED CONVERTER

![Simulated Block Diagram of SEPIC with Motor load.](image)

![Basic BLDC motor control system with position sensors](image)

The switch used in proposed converter is Power MOSFET has lower switching losses but its on-resistance and conduction losses are more. MOSFET is a voltage-controlled device. MOSFET has positive temperature coefficient for
resistance. This makes parallel operation of MOSFET easy. In MOSFET secondary break down does not occur, because it has positive temperature co-efficient. Powers MOSFET in higher voltage rating has more conduction losses. The chosen MOSFET is IRF 840 and voltage and current rating is 500V and 8A. All the power MOSFETs are designed for application such as switching regulators, switching converters, motor drives. The IRF-840 provides fast switching, ruggedized device design, low on-resistance and cost effectiveness, dynamic dv/dt rating, repetitive avalanche rated and ease of paralleling. The hardware implementation includes Power circuit and Control circuit.

The figure of the drive system implementation is given in Fig.5. AC supply is rectified using diode bridge and changed to DC supply. The dc bus voltage is regulated by PWM of the switch S1. This DC power is regulated using SEPIC. This DC-DC converter is applied to minimize the harmonics in the input current. Then the DC power is supplied to BLDC motor through inverter. Hysteresis control is used to observe the phase currents to be excited. The speed of the motor is derived from the position inputs and is compared with the speed reference to create the current references. The motor shaft is coupled to a hysteresis brake acting as a load. It provides isolation between microcontroller and power circuits. RPS gives 5V supply for micro controller and 12V supply for driver. It is converted from AC supply. AC supply is step down using step down transformer. A capacitive filter circuit is used where a capacitor is connected at the rectifier output and dc is obtained across it. The filtered waveform is essentially a dc voltage with negligible ripple and it is ultimately fed to the motor load.

4.1 Power circuit
The 230/12V AC input is rectified into 16V pulsating DC with the help of full bridge rectifier circuit.

The ripples in the pulsating DC are removed and pure DC is obtained by using a capacitor filter. The positive terminal of the capacitor is connected to the input pin of the 7812 regulator for voltage regulation. An output voltage of 12V obtained from the output pin of 7812 is fed as the supply to the pulse amplifier. An output voltage of 5V obtained from the output pin of 7805 is fed as the supply to the microprocessor. From the same output pin of the 7805, a LED is connected in series with the resistor to indicate that the power is ON.

4.2 Control circuit
The control circuit controls the power circuit by using gate pulses generated by controller. The control circuit has the following Power supply, Microcontroller, Driver circuit (Isolation circuit).

The driver unit consists of optocoupler and isolation circuit. There are many situations where signals and data need to be transferred from one subsystem to another within a piece of electronics equipment, or from one piece of equipment to another, without making a direct ohmic electrical connection. Often this is because the source and destination are (or may be at times) at very different voltage levels, like a microprocessor which is operating from 5V DC but being used to control a MOSFET which is switching 240V AC. In such situations the link between the two must be an isolated one, to protect the microcontroller from over voltage damage.

© www.ijarcse.com, All Rights Reserved
Optocoupler is an electronic device designed to transfer electrical signals by utilizing light waves to provide coupling with electrical isolation between its input and output. The main purpose is to prevent high voltages from damaging components or distorting transmissions on the other side. An opto-isolator contains a source (emitter) of light, almost a LED that converts electrical input signal into light, and a photo sensor, which detects incoming light and either generates electric energy directly.

The driver is a high voltage, high speed power MOSFET driver with independent high and low side referenced output channels. Logic inputs are compatible with standard output, down to 3.3V logic. The output drivers feature a high pulse current buffer staged for minimum driver cross-conduction. Some of the special features of are floating channel designed for bootstrap operation, gate drive supply range from 10 to 20V, under voltage lockout for both channels, CMOS Schmitt-triggered inputs with pull down, cycle by cycle edge-triggered shutdown logic, matched propagation delay for both channels.

The figure 9 shows the circuit configuration of Diode Bridge rectifier, Capacitor, SEPIC converter, PI Controller with closed loop DC Motor load. The given input is ac and it is rectified into dc by rectifier for sepic converter to drive the dc shunt motor.

V. SIMULATION RESULT AND DISCUSSION

The SEPIC and the D.C. Motor are connected in the Simulink with Proportional Integral (PI) Controller which acts as bridge between them. The system interfaced with the MATLAB takes a larger time for providing the output. The SEPIC topology is controlled using the PI Controller as explained. The controller is carried out between 0 and 1 for a closed loop system.
The converter with motor load is simulated at various load conditions in order to obtain maximum voltage. The main objective to drive a D.C. Motor to attain twice that of an input voltage of the system. The current is predicated at all the loaded conditions. The results obtained in the form of waveform are with respect to the time. The figure 10 shows the output voltage. The output voltage is observed to be 35V.

The figure 11 shows the output current of D.C. Motor and it is 1.1A for the given input voltage 17Vdc.

VI. EXPERIMENTAL RESULT

To verify performance and analysis of the proposed SEPIC converter, a prototype is implemented and tested with the following specification.

1) Input voltage $V_{in} = 17V$.
2) Output voltage $V_o = 35V$.
3) Switching frequency $f_s = 33$ kHz.
4) Output power $P_o = 55W$.

The control circuit was implemented with a Microcontroller AT89S52 from Atmel’s family. The turn ratio n of the coupled inductor is selected as 0.25. Then, the condition for inductor rating is 100 μH. The value of Capacitor is selected as 4.7 μF, 124V. The input pulse given to the driver circuit and the voltage is approximately 5V. The driver amplifier amplifies the input voltage. The amplified output pulse voltage nearly 12V from the circuit. This amplified driving pulse is used to drive the MOSFET switches.
Figure 12: Overall view of Hardware Kit

1. Diode Bridge Rectifier
2. Transformer1:2,40V, 2A, Ferrite core
3. Inductor 100μH
4. Diode MIC 5408
5. MOSFET (Sa) IRF840 500V, 8A, Ferrite core
6. MOSFET (Sm) IRF840 500V, 8A, Ferrite core
7. Microcontroller AT89S52
8. Optocoupler
9. Driver circuit
10. Capacitor 4.7μF, 250V
11. DC Motor (Shunt) 48V, 1500RPM

Figure 13: Hardware Output Waveforms
The variations are very small which relates the characteristics of the converter more close between the simulation and the hardware results. The proposed converter shows better characteristics due to its soft-switching of power switches and the output diode.

![Figure 1: Comparison of simulated and hardware Voltage for motorload](image)

![Figure 15: Efficiency vs Output Power of motorload](image)

The SEPIC converter fed DC Motor attains an efficiency of 94.5% at full load condition. The proposed converter exhibit higher efficiency due to its soft-switching characteristics of power switches and the output diode. The converter shows lower efficiency under light load. This is due to MOSFET’s secondary current. It increases the conduction loss and also the power loss at light load.

VII. CONCLUSION

The operating principle, analysis, and the implementation of a SEPIC converter with soft-switching are presented in this paper. In the proposed converter, the coupled inductor and power switches are mainly used for ripple-free input current and to achieve ZVS operation. The advantages of the proposed converter are low voltage stresses, low switching losses, reverse-recovery problem of the output diode, and high-voltage applications. The design consideration of the proposed converter is included. The experimental results based on a prototype are presented for validation.

REFERENCES

© www.ijarcssse.com, All Rights Reserved

AUTHOR’S BIOGRAPHY

P. Dhanasekaran is currently working in Sri Venktesa Perumal College of Engineering and Technology, JNTU, Anantapur and born in Chennai, Tamil Nadu, India. He received his M.E Degree from Jeppiaar Engineering College, Anna University, Chennai, India. He received his B.E degree in Electrical and Electronics Engineering in Loyola institute of technology, Anna University, Chennai, India in 2011. His current research interests include sepic topology, Induction Motor Drives, Multi-level inverter, soft-switching techniques, Fuzzy logic in image processing, Z-Source Converters. He published more than 10 papers in proceedings/national conference/International conference/journals. His mail id dhanaee891@gmail.com

S. Shanmugam received his M.E Degree from PSG college of Technology, Anna University, Coimbatore, India. His current research interests include Y-source inverters, High-Frequency MOSFET gate drivers, Induction Motor Drives, Electrical machines, Power electronics, Neural network. His mail id gssshansvn@gmail.com