DFT and TD-DFT Study on the Structural, Optoelectronic and Photovoltaic Properties of Chemically Modified Donor-Acceptor Conjugated Oligomers for Organic Solar Cells

Zakaria EL Malki, Mohammed Bouachrine, Françoise. Serein-Spirau, Jean-Marc. Sotiropoulos

Abstract


In this paper, a novel theoretical tool for some new low-band-gap copolymers has been developed on the basis of density functional theory (DFT) quantum chemical calculations to model their optoelectronic properties. We have designed a series of novel double organic D-π-A (electron donor-π-conjugated-acceptor) dyes employed in dye-sensitized solar cells (DSSCs). These copolymers are constituted of (Carbazole-Methylthiophene), benzothiadiazole and thiophene [(Cbz-Mth)-B-T] units essentially as well as their derivatives leading to donor (D)-acceptor (A) structure-types. The cyanoacrylic acid (A) anchoring group leads to more red shift of absorption bands. The optimized structures and optoelectronic properties of these dyes were investigated by using the Density Functional Theory DFT/B3LYP/6-31G (d, p) method and Time Dependant Density Functional Theory (TD/DFT) calculations. Firstly, we studied the insertion of thiophene as spacer unit into [(Cbz-Mth)-B]2-A backbone to reach (Carbazole-Methylthiophene), benzothiadiazole-thiophene-cyanoacrylic acid [(Cbz-Mth)-B-T]2-A copolymer, secondly, thiophene usual unit was replaced by bithiophene and three-thiophene respectively, entity to obtain (Carbazole-Methylthiophene), benzothiadiazole-dithiophene-cyanoacrylic acid [(Cbz-Mth)-B-DT]2-A and (Carbazole-Methylthiophene), benzothiadiazole-Three-Thiophene-cyanoacrylic acid [(Cbz-Mth)-B-TT]2-A copolymers. Later, we examined the insertion effect of bridging by C=C (CN)2 groups on the energy gaps and the electronic properties of the study copolymer [(Cbz-Mth)-B-T-C=C (CN)2-T]2-A, and finally, ethynyl spacer was added to obtain a novel oligomer model, denoted (Carbazole-Methylthiophene)–ethynyl- benzothiadiazole-dithiophene- C=C(CN)2 groups-cyanoacrylic acid [(Cbz-Mth)-E-B-T-C=C(CN)2-T]2-A and to investigate their bridging effect into the main backbone on various properties by examining structural and electronic properties. The calculated geometries indicate that these dyes are all coplanar. In order to predict the band gaps for guiding the synthesis of novel materials with low band gaps, we applied quantum-chemical techniques to calculate the band gaps in several oligomers. The analysis of microelectronic and photonic structure in one dimension program (AMPS-1D) program has been successfully used to study the compounds organic solar cells. The calculated results of these dyes demonstrate that these compounds are then blended with [6,6]-phenyl-C61- butyric acid methyl ester (PCBM) in bulk-heterojunction solar cell.

Full Text:

PDF

References


A. Mishra, M. K. R Fischer, P. Bäuerle, Angew. Chem., Int. Ed. 48, 2474, 2009.

Y. Ooyama, Y. Harima, Eur. J. Org. Chem. 2903, 2009.

Z. Ning, H. Tian, Chem. Commun. 5483, 2009.

H. Qin, S.Wenger, M.Xu, F.Gao, X.Jing,; P.Wang, M. S. Zakeeruddin, M. Grätzel, J. Am. Chem. Soc. 130, 9202, 2008.

H.-Y. Yang, Y.-S. Yen, Y.-C. Hsu, H. H. Chou, J. T. Lin, Org. Lett. 12, 16, 2010.

H. Tian, X. Yang, R. Chen, R. Zhang, A. Hagfeldt, L. Sun, J. Phys. Chem. C 112, 11023, 2008.

Z. S. Wang, Y. Cui, Y. Dan-Oh, C. Kasada, A. Shinpo, K. Hara, J. Phys. Chem. C, 111, 7224, 2007.

B. O’Regan, M. Grätzel, Nature 353, 737, 1991.

A. Hagfeldt, M. Grätzel, Acc. Chem. Res. 33, 269, 2000.

M. Grätzel, Nature 414, 338, 2001.

T. Dittrich, B. Neumann, H. Tributsch, J. Phys. Chem. C 111 2265, 2007.

X.Z. Liu, Y.H. Luo, H. Li, Y.Z. Fan, Z.X. Yu, Y. Lin, L.Q. Chen, Q.B. Meng, Chem. Commun. 27, 2847, 2007.

J.B. Xia, F.Y. Li, H. Yang, X.H. Li, C.H. Huang, J. Mater. Sci. 42, 6412, 2007.

M.X. Li, X.B. Zhou, H. Xia, H.X. Zhang, Q.J. Pan, T. Liu, H.G. Fu, C.C. Sun, Inorg. Chem. 47, 2312, 2008.

Z. Tian, M. Huang, B. Zhao, H. Huang, X. Feng, Y. Nie, P. Shen, S. Tan, Dyes Pigm. 87, 181, 2010.

M. Matsui, A. Ito, M. Kotani, Y. Kubota, K. Funabiki, J. Jin, T. Yoshida, H. Minoura, H. Miura, Dyes Pigm. 80, 233, 2009.

X. Ma, W. Wu, Q. Zhang, F. Guo, F. Meng, J. Hua, Dyes Pigm. 82, 353, 2009.

W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of theinterpenetrating network morphology, Adv. Funct. Mater. 15, 1617–1622, 2005.

T. Kitagawa, Y. Murata, K. Komatsu, Fullerene reactivity—fullerene cations and open-cage fullerenes, in: M.M. Haley ,R.R. Tykwinski (Eds.), Carbon-Rich Compounds, Wiley-VCH Verlag GmbH& Co.KGaA,Weinheim, pp.383–420, 2006.

Z. Ning, H. Tian, Triarylamine: a promising core unit for efficient photovoltaic materials. Chem Commun;:5483-95, 2009.

DH. Lee, MJ. Lee, HM. Song, BJ. Song, KD. Seo, HK. Kim, et al. Organic dyes incorporating low-band-gap chromophores based on p-extended benzothiadiazole for dye-sensitized solar cells. Dyes Pigments,; 91:192-8, 2011.

Z. Ning, Q. Zhang, W. Wu, H. Pei, B. Liu, H. Tian, Starburst triarylamine based dyes for efficient dye-sensitized solar cells. J Org Chem,; 73:3791-7, 2008.

G. Li, KJ. Jiang, YF. Li, SL. Li, LM. Yang. Efficient structural modification of triphenylamine-based organic dyes for dye-sensitized solar cells. J Phys Chem C; 112:11591-9, 2008.

ZS. Wang, FY. Li, CH. Huang, L. Wang, M. Wei, LP. Jin, et al. Photoelectric conversion properties of nanocrystalline TiO2 electrodes sensitized with hemicyanine derivatives. J Phys Chem B; 104:9676-82, 2000.

YS. Chen, C. Li, ZH. Zeng, WB. Wang, XS. Wang, BW. Zhang. Efficient electron injection due to a special adsorbing group’s combination of carboxyl and hydroxyl: dye-sensitized solar cells based on new hemicyanine dyes. J Mater Chem; 15:1654-61, 2005.

K. Tanaka, K. Takimiya, T. Otsubo, K. Kawabuchi, S. Kajihara, Y. Harima. Development and photovoltaic performance of oligothiophene-sensitized TiO2 solar cells. Chem Lett; 35:592-3, 2006.

T. Horiuchi, H. Miura, S. Uchida. Highly efficient metal-free organic dyes for dye-sensitized solar cells. J Photochem Photobiol A Chem; 164:29-32, 2004.

T. Horiuchi, H. Miura, K. Sumioka, S. Uchida. High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J Am Chem Soc; 126: 12218-9, 2004.

L. Schmidt-Mende, U. Bach, R. Humphry-Baker, T. Horiuchi, H. Miura, S. Ito, et al. Organic dye for highly efficient solid-state dye-sensitized solar cells. Adv Mater; 17:813-5, 2005.

S. Ito, SM. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvët, M. Grätzel, et al. High efficiency organic-dye-sensitized solar cells controlled by nanocrystalline- TiO2 electrode thickness. Adv Mater; 18:1202-5, 2006.

S. Eu, T. Katoh, T. Umeyama, Y. Matano, H. Imahori. Synthesis of sterically hindered phthalocyanines and their applications to dye-sensitized solar cells. Dalton Trans;:5476-83, 2008.

S.M. Bouzzine, A. Makayssi, M. Hamidi, M. Bouachrine, J. Mol. Struct. Theochem. 851, 254–262, 2008.

Y. He, J. You, L. Dou, C.-C. Chen, E. Richard, K.C. Cha, Y. Wu, G. Li, Y. Yang, Chem. Commun. 48, 7616–7618, 2012.

Z. El Malki, M. Bouachrine, M. Hamidi, F. Serein-Spirau, J. P. Lere-Porte, J. Marc Sotiropoulos, J. Mater. Environ. Sci. 7 (9), 3244, 2016.

Z. El Malki, M. Bouachrine, L. Bejjit, M. Haddad, F. Serein-Spirau, J. Marc Sotiropoulos, International Journals of Advanced Research in Computer Science and Software Engineering ISSN: 2277-128X (Volume-7, Issue-6), 96-107, 2017.

B.C. Thompson, L.G. Madrigal, M.R. Pinto, T.S. Kang, K.S. Schanze, J.R. Reynolds, J. Polym. Sci. Pol. Chem. 43, 1417–1431, 2005.

Y. Lin, P. Cheng, Y. Li, X. Zhan, Chem. Commun. 48, 4773–4775, 2012.

W. Zhu, Y. Wu, S. Wang, W. Li, Z. Wang, H. Tian, Organic DeAepeA solar cell sensitizers with improved stability and spectral response. Adv Funct Mater; 21:756-63, 2010

G. Zotti, G. Schiavon, S. Zecchin, J. F. Morin, M. Leclerc, Macromolecules 35, 2122, 2002.

F. Garnier, G. Horowitz, X. Peng, D. Fichou, Adv.Mater 2, 562, 1990.

R. E.Gill, G. G.Malliaras, J. Wildeman, G. Hadziioannou, Adv. Mater 6, 132, 1994.

Z. El Malki, K. Hasnaoui, S.M. Bouzzine, L. Bejjit, M. Haddad, M. Hamidi, and M. Bouachrine, SRX Chemistry • Volume 2010 • Article ID 346843 • doi:10.3814/2010/346843, 1-8, 2010.

S. Leroy-Lhez, M. Allain, J. Oberle, F. Fages, New J. Chem. 31, 1013–1021, 2007.

V. Roy, Y.-G. Zhi, Z.-X. Xu, S.-C. Yu, P.W.H. Chan, C.-M. Che, Adv. Mater.17, 1258–1261, 2005.

A. Marrocchi, F. Silvestri, M. Seri, A. Facchetti, A. Taticchi, T.J. Marks, Chem. Commun. 11, 1380–1382, 2009.

N.S. Baek, S.K. Hau, H.-L. Yip, O. Acton, K.-S. Chen, A.K.-Y. Jen, Chem. Mater. 20, 5734–5736, 2008.

S. Punsay, Thesis submitted in ‘‘Synthesis and characterization of carbazole derivatives for optoelectronic devices’’ for the degree of M.Sc. in Chemistry, Faculty of Science, Ubon Ratchathani University, 2011.

S.H. Vosko, L. Wilk, M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys. 58, 1200–1211, 1980.

A.D. Becke, Density-functional thermochemistry. 3. The role of exact exchange, J. Chem. Phys. 98, 5648–5652, 1993.

A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38, 3098–3100, 1988.

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Gaussian Inc., Wallingford, CT, 2009.

X.-C. Huang, Li, Y.-H. Wang, Z.-H. Kang, R. Lu, E.-L. Miao, F. Wang, G.-W. Wang, H.-Z. Zhang, Opt. Mater. 35, 1373–1377, 2013.

Z.T. Liu, M.F. Lo, H.B. Wang, T.W. Ng, V.A.L. Roy, C.S. Lee, S.T. Lee, Appl. Phys. Lett. 95, 93303–93307, 2009.

W.J. Potscavage, J.R.A. Sharma, B. Kippelen, Acc. Chem. Res. 42, 1758– 1767, 2009.

G.D. Sharma, P. BalaRaju, M.S. Roy, Sol. Energ. Mat. Sol. Cells 92, 261– 272. 2008.

Y.-J. Cheng, S.-H. Yang, C.-S. Hsu, Chem. Rev. 109, 5868–5923, 2009.

A. Mabrouk, A. Azazi, K. Alimi, Polym. Eng. Sci. 53, 1040–1052, 2013.

S. Bertho, I. Haeldermans, A. Swinnen, W. Moons, T. Martens, L. Lutsen, A. Bonfiglio, Influence of thermal ageing on the stability of polymer bulk heterojunction solar cells, Sol. Energy Mater. Sol. cells 91, (5) 385-389, 2007.

N. Hergué, C. Mallet, G. Savitha, M. Allain, P. Frère and J. Roncali, Organic Letters, Vol. 13, No. 7 1762-1765, 2011.

R.G. Pearson, Absolute electronegativity and hardness correlated with molecular orbital theory, Proc. Natl. Acad. Sci. 83, 8440–8841, 1986.

AMPS-1D. Pennsylvania State University, http://www.empl.psu.edu/amps, 1997.

en.wikipedia.org/wiki/P3HT, accessed date 04/05/2012.

Lu Zhang, Master of Science & Engineering, Science & Engineering, May 2012.




DOI: https://doi.org/10.23956/ijarcsse.v8i12.928

Refbacks

  • There are currently no refbacks.




© International Journals of Advanced Research in Computer Science and Software Engineering (IJARCSSE)| All Rights Reserved | Powered by Advance Academic Publisher.