Multiple MapReduce Jobs in Distributed Scheduler for Big Data Applications
Abstract
Full Text:
PDFReferences
J. Koomey, “Growth in data center electricity use 2005 to 2010,” vol. 1. Oakland, CA, USA: Press, Aug. 2011.
J. Hamilton, “Cooperative expendable micro-slice servers (CEMS): Low cost, low power servers for internet-scale services,” in Proc. Conf. Innovative Data Syst. Res., 2009.
J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large clusters,” in Proc. 6th USENIX Symp. Oper. Syst. Des. Implementation, 2004, pp. 137–150.
Hadoop. (2014) [Online]. Available: http://hadoop.apache.org/[5] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and I. Stoica, “Job scheduling for multi-user MapReduce clusters,” Electrical Eng. Comput. Sci. Dept., Univ. California, Berkeley, CA, USA, Tech. Rep. UCB/EECS-2009-55, Apr. 2009.
Apc. (2014) [Online]. Available: http://www.apc.com/
J. Polo, C. Castillo, D. Carrera, Y. Becerra, I. Whalley, M. Steinder, J. Torres, and E. Ayguad_e, “Resource-aware adaptive scheduling for mapreduce clusters,” in Proc. 12th ACM/IFIP/USENIX Int. Middleware Conf., 2011, pp. 187–207.
A. Verma, L. Cherkasova, and R. H. Campbell, “ARIA: Automatic resource inference and allocation for MapReduce environments,” in Proc. 8th ACM Int. Conf. Autonomic Comput., 2011, pp. 235–244.
A. Verma, L. Cherkasova, and R. H. Campbell, “Two sides of a coin: Optimizing the schedule of MapReduce jobs to minimize their makespan and improve cluster performance,” in Proc. IEEE 20th Int. Symp. Model., Anal. Simul. Comput. Telecommun. Syst.,
, pp. 11–18.
B. Palanisamy, A. Singh, L. Liu, and B. Jain, “Purlieus: Localityaware resource allocation for MapReduce in a cloud,” in Proc. Conf. High Perform. Comput., Netw., Storage Anal., 2011.
B. Moseley, A. Dasgupta, R. Kumar, and T. Sarl_os, “On scheduling in map-reduce and flow-shops,” in Proc. 23rd Annu. ACM Symp.
Parallelism Algorithms Archit., 2011, pp. 289–298.
H. Chang, M. S. Kodialam, R. R. Kompella, T. V. Lakshman, M. Lee, and S. Mukherjee, “Scheduling in MapReduce-like systems for fast completion time,” in Proc. IEEE 30th Int. Conf. Comput. Commun., 2011, pp. 3074–3082.
F. Chen, M. S. Kodialam, and T. V. Lakshman, “Joint scheduling of processing and shuffle phases in MapReduce systems,” in Proc. IEEE Conf. Comput. Commun., 2012, pp. 1143–1151.
Y. Zheng, N. B. Shroff, and P. Sinha, “A new analytical technique for designing provably efficient MapReduce schedulers,” in Proc.
IEEE Conf. Comput. Commun., 2013, pp. 1600–1608.
T. J. Hacker and K. Mahadik, “Flexible resource allocation for reliable virtual cluster computing systems,” in Proc. Int. Conf. High
Perform. Comp., Netw., Storage Anal., 2011, pp. 1–12.
B. Palanisamy, A. Singh, and L. Liu, “Cost-effective resource provisioning for MapReduce in a cloud,” IEEE Trans. Parallel Distrib. Syst., no. 1, pp. 1, PrePrints, 2014.
J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox, “Twister: A runtime for iterative MapReduce,” in Proc. 19th ACM Int. Symp. High Perform. Distrib. Comput., 2010, pp. 81
DOI: https://doi.org/10.23956/ijarcsse.v7i12.484
Refbacks
- There are currently no refbacks.